Issue
Korean Journal of Chemical Engineering,
Vol.39, No.7, 1762-1767, 2022
Effect of the physicochemical properties of SiO2 on performance of supported metallocene catalyst
The effect of the calcination temperature of SiO2 on ethylene polymerization behavior was studied with supported metallocene catalysts. The concentration of hydroxyl group on the SiO2 surface was measured through FTIR, thermogravimetry, and trimethylaluminium titration method. In addition, physical properties such as particle morphology, surface area, and pore characteristics were analyzed through BET, and SEM. (n-BuMeCp)2ZrCl2 was supported on the SiO2, which was calcined at different temperatures in the range of 100 and 900℃. The resulting supported catalyst was applied to ethylene homopolymerization and ethylene-1-hexene copolymerization at 80℃ and 20 bar, showing that the lower calcination temperature resulted in higher activity due to the larger Zr and Al loadings.
[References]
  1. Kaminsky W, Laban A, Appl. Catal. A: Gen., 222(1-2), 47, 2001
  2. Kaminsky W, J. Chem. Soc.-Dalton Trans., 9, 1413, 1998
  3. Kaminsky W, Arndt M, Adv. Polym. Sci., 127, 143, 1997
  4. Heurtefeu B, Bouilhac C, Cloutet E, Taton D, Deffieux A, Cramail H, Prog. Polym. Sci, 36(1), 89, 2011
  5. Fink G, Steinmetz B, Zechlin J, Przybyla C, Tesche B, Chem. Rev., 100(4), 1377, 2000
  6. Bashir MA, Monteil V, Boisson C, McKenna TFL, React. Chem. Eng., 2(4), 521, 2017
  7. Carnahan EM, Jacobsen GB, Cattech, 4(1), 74, 2000
  8. Alt HG, Dalton Trans., 20, 3271, 2005
  9. Zurek E, Ziegler T, Prog. Polym. Sci, 29(2), 107, 2004
  10. Tayano T, Uchino H, Sagae T, Yokomizo K, Nakayama K, Ohta S, Nakano H, Murata M, Macromol. React. Eng., 11(2), 1, 2017
  11. Stürzel M, Thomann Y, Enders M, Mülhaupt R, Macromolecules, 47(15), 4979, 2014
  12. Yim JH, Lee JS, Ko YS, Polymer, 39(1), 169, 2015
  13. Lee JS, Yim JH, Jeon JK, Ko YS, Catal. Today, 185(1), 175, 2012
  14. Cariño AC, Park SJ, Ko YS, Appl. Chem. Eng., 29(4), 461, 2018
  15. Lee SY, Ko YS, J. Nanosci. Nanotechnol., 13(6), 4401, 2013
  16. Lee JS, Ko YS, J. Mol. Catal. A-Chem., 386, 120, 2014
  17. Encarnacion JD, Park SJ, Ko YS, Korean J. Chem. Eng., 37(2), 380, 2020
  18. Celedonio J, Lee JS, Ko YS, Appl. Chem. Eng., 25(4), 396, 2014
  19. Ko YS, Lee JS, Yim JH, Jeon JK, Jung KY, J. Nanosci. Nanotechnol., 10(1), 180, 2010
  20. Zheng X, Smit M, Chadwick JC, Loos J, Macromolecules, 38(11), 4673, 2005
  21. Ek S, Root A, Peussa M, Niinistö L, Thermochim. Acta, 379(1-2), 201, 2001
  22. Albunia AR, Parades F, Jeremic D, Multimodal polymers with supported catalysts, Springer, New York (2019).
  23. Van Grieken R, Calleja G, Serrano D, Martos C, Polym. React. Eng., 11(1), 17, 2003
  24. Atiqullah M, Akhtar MN, Moman AA, Abu-Raqabah AH, Palackal SJ, Al-Muallem HA, Hamed OM, Appl. Catal. A: Gen., 320, 134, 2007
  25. Bashir MA, Vancompernolle T, Gauvin R, Delevoye L, Merle N, Monteil V, Taoufik M, McKenna TFL, Boisson C, Catal. Sci. Technol., 6(9), 2962, 2016
  26. Mueller R, Kammler HK, Wegner K, Pratsinis SE, Langmuir, 19(1), 160, 2003
  27. Gallas JP, Goupil JA, Vimont A, Lavalley JC, Gil B, Gilson JP, Miserque O, Langmuir, 25(10), 5825, 2009
  28. Armistead CG, Tyler AJ, Hambleton FH, Mitchell SA, Hockey JA, J. Phys. Chem., 73(11), 3947, 1969