Issue
Korean Journal of Chemical Engineering,
Vol.39, No.7, 1959-1967, 2022
Hierarchical multi-metal-doped mesoporous NiO-silica nanoparticles towards a viable platform for Li-ion battery electrode application
Hierarchical nanostructures have received wide attention for their distinguished physical and chemical properties of the synthesized materials, mainly in future energy storage applications. In this study, Ni-based multi-metal doped silica mesoporous nanoflowers were prepared and characterized as a potential anode material for lithium ion batteries. A facile synthesis strategy is depicted here for Ni-based multi-metal doped silica mesoporous nanoflowers by using a CTAB surfactant and ammonia basic media in water-ethanol mixed solvent media. Ce, Al, Mn, and Co species have been chosen as other additive metals for doping in this mesostructure in order to find the enhanced electrochemical performance of the Ni-based silica. Systematic characterization of the material was performed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WA-XRD) analysis and N2 sorption, which show 500-600 nm sized particles with fine-looking nanoflower morphology and surface area in the range of 211-405m2g-1. The initial charge/discharge capacity was found to be 1,313/178, 990/436, 1,122/234 and 1,585/ 689 mA h g- 1 for different Ni-silica, Ni-Ce-silica, Ni-Al-silica and Ni-Co-Mn-Al-silica electrodes, respectively. The enhanced electrochemical performance for Ce doped Ni-silica compared to other mesoporous samples may be attributed to improved electrical conductivity as well as the hierarchical nanoflower-like structure.
[References]
  1. Owusu PA, Asumadu-Sarkodie S, Cogent Engineer., 3, 1167990, 2016
  2. Kruger P, Alternative energy resources: The quest for sustainable energy, Wiley Publications (2006).
  3. Sternberg A, Bardow A, Energy Environ. Sci., 8, 389, 2015
  4. Nathan D, Nzewi ON, Onuora KC, Abioye AO, Quest J. Electronics Commun. Eng. Res., 1(1), 01, 2013
  5. Ge S, Leng Y, Liu T, Longchamps RS, Yang XG, Gao Y, Wang D, Wang D, Wang CY, Sci. Adv., 6, eaay7633, 2020
  6. Eberle U, Von Helmolt R, Energy Environ. Sci., 3, 689, 2010
  7. Larcher D, Tarascon JM, Nat. Chem., 7, 19, 2015
  8. Cabana J, Monconduit L, Larcher D, Palacín MR, Adv. Mater., 22, E170, 2010
  9. Gao G, Lu S, Dong B, Xiang Y, Xi K, Ding S, J. Mater. Chem., 4, 6264, 2016
  10. Zhao Y, Li X, Yan B, Xiong D, Li D, Lawes S, Sun X, Adv. Energy Mater., 6, 1502175, 2016
  11. Ette PM, Chithambararaj A, Prakash AS, Ramesha K, ACS Appl. Mater. Interfaces, 12, 11511, 2020
  12. Balamurugan S, Naresh N, Prakash I, Satyanarayan N, Appl. Surf. Sci., 535, 147677, 2021
  13. Li JY, Xu Q, Li G, Yin YX, Wan LJ, Guo YG, Mater. Chem. Front., 1, 1691, 2017
  14. Li P, Zhao G, Zheng X, Xu X, Yao C, Sun W, Dou SX, Energy Storage Mater., 15, 422, 2018
  15. Mishra A, Mehta A, Basu S, Malodeb SJ, Shetti NP, Shukla SS, Nadagouda MN, Aminabhavi TM, Mater. Sci. Energy Technol., 1(2), 182, 2018
  16. Nitta N, Wu F, Lee JT, Yushin G, Mater. Today, 18(5), 252, 2015
  17. Harris J, Silk R, Smith M, Dong Y, Chen WT, Waterhouse GIN, ACS Omega, 5, 18919, 2020
  18. Sun S, Zhang X, Sun Y, Yang S, Song X, Yang Z, Phys. Chem. Chem. Phys., 15, 10904, 2013
  19. Negahdary M, Heli H, Recent Patents on Nanotechnol., 12, 22, 2018
  20. Tao T, Chen Y, Chen Y, Fox DS, Zhang H, Zhou M, Raveggi M, Barlow AJ, Glushenkov AM, ChemPlusChem, 82, 295, 2017
  21. Shende P, Kasture P, Gaud RS, Artif. Cells Nanomed. Biotechnol., 46(S1), S413, 2018
  22. Li L, Ye M, Ding Y, Xie D, Yu D, Hu Y, Chen HY, Peng S, J. Alloy. Compd., 812, 152099, 2020
  23. Tariq Z, Rehman SU, Zhang J, Butt FK, Zhang X, Cheng B, Zahra S, Li C, Mater. Sci. Semicond. Process, 123, 105549, 2021
  24. Liu S, Shen B, Niu Y, Xu M, J. Colloid Interface Sci., 488, 20, 2017
  25. Kim SW, Seo DH, Gwon H, Kim J, Kang K, Adv. Mater., 22, 5260, 2010
  26. Stöber W, Fink A, J. Colloid Interface Sci., 26, 62, 1968
  27. Pal N, Im S, Cho EB, Kim H, Park J, J. Ind. Eng. Chem., 81, 99, 2020
  28. Pal N, Cho EB, Kim D, RSC Adv., 4, 9213, 2014
  29. Patra AK, Dutta A, Bhaumik A, J. Hazard. Mater., 201-202, 170, 2012
  30. Hao S, Wang Z, Chen L, Mater. Des., 111, 616, 2016
  31. Zhou S, Zhao H, Ma D, Miao S, Cheng M, Bao X, Z. Phys. Chem., 219, 949, 2005
  32. Derafa W, Paloukis F, Mewafy B, Baaziz W, Ersen O, Petit C, Corbel G, Zafeiatos S, RSC Adv., 8, 40712, 2018
  33. Xie D, Yuan W, Dong Z, Su Q, Zhang J, Du G, Electrochim. Acta, 92, 87, 2013
  34. Favors Z, Wang W, Bay HH, George A, Ozkan M, Ozkan CS, Sci. Rep., 4(1), 1, 2014
  35. Ma M, Wang H, Liang S, Guo S, Zhang Y, Du X, Electrochim. Acta, 256, 110, 2017
  36. Varghese B, Reddy M, Yanwu Z, Lit CS, Hoong TC, Rao GS, Chowdari B, Wee ATS, Lim CT, Sow CH, Chem. Mater., 20(10), 3360, 2008
  37. Huang X, Tu J, Zhang B, Zhang C, Li Y, Yuan Y, Wu H, J. Power Sources, 161(1), 541, 2006
  38. Kang Y, Zhang YH, Shi Q, Shi H, Xue D, Shi FN, J. Colloid Interface Sci., 585, 705, 2021