Issue
Korean Journal of Chemical Engineering,
Vol.39, No.7, 1659-1672, 2022
A non-aqueous phase extraction system using tributyl phosphate for H3PO4 separation from wet-process superphosphoric acid: Extraction equilibrium and mechanism
Conventional wet-process phosphoric acid (WPA) extraction route encounters unsatisfactory extraction efficiency, phosphorus yield, and raffinate utilization. Herein, a new extraction route for H3PO4 separation from wetprocess superphosphoric acid (WSPA) is proposed to improve these dilemmas. We focus on the equilibrium of H3PO4 extraction by tributyl phosphate (TBP) from WSPA and the extraction mechanism of TBP under high H3PO4 loading conditions. Several critical factors affecting the extraction equilibrium were investigated to optimize the extraction process, including the initial phase ratio (R0), the volume fraction of TBP in extractant (ΦTBP), temperature (T), and the crosscurrent extraction stages. The results show that the single-stage extraction rate of H3PO4 reaches 70% at R0=6, ΦTBP=80% and T=80℃ with separation factors βP/Fe, βP/Al, βP/Mg, and βP/Ca of 12.48, 21.66, 47.57, and 8.89, respectively. In addition, Fourier transform infrared spectroscopy and Raman spectroscopy enlighten the extraction mechanism at high loading conditions. The characteristic peak positions of P=O, P=O…H2O, and P=O…H3PO4 in the infrared spectra are determined to be centered at 1,283, 1,267, and 1,233 cm-1, respectively. The semi-quantitative analysis implies that the self-polymerization behavior of the extraction complex TBP·H3PO4 and the mutual attraction of reverse micelles (RMs) through their polar cores is the trigger for the formation of a third phase. Furthermore, the red shift of P-(OH)3 asymmetrical stretching vibration in the Raman spectrum indicates the formation of hydrogen bonds among H3PO4 molecules in the organic phase, which corroborates the formation of RMs. Conclusions can be obtained that H3PO4 enters the organic phase under high loading capacity by reversed micellar extraction. The feasibility of this extraction process is further tested by scrubbing, stripping, and cycling performance experiments. The results are promising for the design of a new efficient route for separating H3PO4 from WPA.
[References]
  1. Chen Z, Ding Y, Long B, Deng F, Liu P, Xiao G, Zhang Q, Chem. Bioeng., 32, 63, 2015
  2. Meles S, Prostenik MV, Polyhedron, 3, 615, 1984
  3. Jin Y, Ma YJ, Weng YL, Jia XH, Li J, J. Ind. Eng. Chem., 20, 3446, 2014
  4. El-Khaiary MI, Sep. Purif. Technol., 12, 13, 1997
  5. Yu J, Liu DJ, Chem. Eng. Res. Des., 88, 712, 2010
  6. Hmamou M, Ammary B, Bellaouchou A, El hammadi A, Mater. Today Proc., 24, 1, 2020
  7. Li G, Hubei Xingfa Chemical Industry Group Co., T. C. I. R Institute, Phosphoric acid for industry use, GB/T 2091-2008, China National Standardization Administration Committee.
  8. Amin MI, Ali MM, Kamal HM, Youssef AM, Akl MA, Hydrometallurgy, 105, 115, 2010
  9. Assuncao MC, Cote G, Andre M, Halleux H, Chagnes A, RSC Adv., 7, 6922, 2017
  10. Feki M, Chem. Eng. J., 88, 71, 2002
  11. Zhang SJ, Chen YX, Zhang T, Lv L, Zheng DY, Zhong BH, Tang SW, Sep. Purif. Technol., 249, 117, 2020
  12. Chen H, Sun Z, Song X, Yu J, J. Chem. Eng. Data, 61, 438, 2015
  13. Chen M, Li J, Jin Y, Luo JH, Zhu XH, Yu DF, J. Chem. Technol. Biotechnol., 93, 467, 2018
  14. Liu D, Jiang S, Luo H, Zhang Y, Phosphate Compd. Fert, 20, 6, 2005
  15. Yang L, Tang C, Zhang ZY, Wang XL, Chinese Patent, CN106145075A (2016).
  16. Yang JX, Kong XJ, Xu DH, Xie WJ, Wang XL, Chem. Eng. J., 359, 1453, 2019
  17. Mcgill KE, Kerns OS, Nutr. Cycl. Agroecosyst., 25, 179, 1990
  18. Breed CE, Mcgill KE, Holt MT, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 21, 609, 1986
  19. Huang MY, Yang K, Li J, Zhong BH, Phosphate. Compd. Fert., 19, 9, 2004
  20. Zhong BH, Li J, Chen L, Hsien Tai Hua Kung, 25, 48, 2005
  21. Jin Y, Zou D, Wu S, Cao Y, Li J, Ind. Eng. Chem. Res., 54, 108, 2014
  22. Wei C, Hu B, Li Y, Wang S, Wuf H, Pu J, Phosphate. Compd. Fert., 33, 28, 2018
  23. Luo Z, Zeng B, Luo K, Wang B, Ind. Miner. Process., 43, 60, 2014
  24. Yang L, Phosphate. Compd. Fert., 35, 19, 2020
  25. Dhouib-Sahnoun R, Fekif M, Ayedi HF, J. Chem. Eng. Data, 47, 861, 2002
  26. Jin Y, Li J, Luo J, Zheng DS, Liu L, J. Chem. Eng. Data, 55, 3196, 2010
  27. Liu C, Cao J, Shen W, Ren Y, Mu W, Ding X, Fluid Phase Equilib., 408, 190, 2016
  28. Ziat K, Mesnaoui B, Bounahmidi T, Boussen R, Guardia M, Garrigues S, Fluid Phase Equilib., 201, 259, 2002
  29. Liu CQ, Ren Y, Wang YN, J. Chem. Eng. Data, 59, 70, 2013
  30. Ren Y, Liu CQ, Cao J, Mu W, Ding X, J. Chem. Eng. Data, 61, 1735, 2016
  31. Ziat K, Messnaoui B, Bounahmidi T, Guardia M, Fluid Phase Equilib., 224, 39, 2004
  32. Zheng DS, Li J, Zhou K, Luof JH, Jin Y, J. Chem. Eng. Data, 55, 58, 2010
  33. Kouzbour S, Gourich B, Gros F, Vial C, Allam F, Stiriba Y, Hydrometallurgy, 188, 222, 2019
  34. Xun F, Yan Z, Zheng HS, Solvent Extr. Ion Exch., 20, 241, 2002
  35. Tedesco PH, Rumi VB, Polyhedron, 42, 1033, 1980
  36. Higgins CE, Baldwin WH, Polyhedron, 24, 415, 1962
  37. Nave S, Mandin C, Martinet L, Berthon L, Testard F, Madic C, Zemb T, ACS Phys. Chem. Au., 6, 799, 2004
  38. Yi XT, Huo GS, Tang W, Hydrometallurgy, 192, 105265, 2020
  39. Zhou XK, Zhang ZF, Kuang ST, Li YL, Ma YQ, Li YH, Liao WP, Hydrometallurgy, 185, 76, 2019
  40. Mishra RK, Rout PC, Sarangi K, Nathsarma KC, Hydrometallurgy, 104, 298, 2010
  41. Cui L, Wang L, Feng M, Fang L, Guo Y, Cheng F, Green Energy Environ., 6, 607, 2020
  42. Zhao Y, Xing C, Shao C, Chen G, Sun S, Chen G, Zhang L, Pei J, Qiu P, Guo S, Fuel, 278, 118229, 2020
  43. Rudolph WW, Dalton Trans, 39, 9642, 2010