Issue
Korean Journal of Chemical Engineering,
Vol.39, No.7, 1717-1728, 2022
Numerical study of fly ash deposition process in low temperature economizerunder SCR conditions
After the boiler of a thermal power plant in Nanjing was reformed for denitrification, the clogging of fly ash particles occurred near the support beam of the economizer. The critical speed criterion under different working conditions was constructed by Fluent custom code (UDF), and the change of fly ash deposition on the support beam of the economizer was simulated without ABS and with ABS. At the same time, the influence of the fin layout structure on the movement of smoke and fly ash particles was analyzed. The results show that the stagnation of fly ash particles on the supporting beam is the main cause of sediment clogging. Due to the production of ABS in the process of denitrification, the adhesion of fly ash particles is intensified. At the same time, the fin structure on the support beam hinders the lateral movement of fly ash particles, which causes the growth of clogged fly ash near the support plate. On this basis, an optimization plan for the fin structure is proposed, which improves the flue gas flow conditions and avoids the occurrence of clogging and growth of fly ash.
[References]
  1. Tsai CJ, Lin JS, Aggarwal SG, Chen DR, Aerosol Sci. Tech., 38, 131, 2004
  2. Shi Y, Shu H, Zhang Y, Fan H, Zhang Y, Yang L, Fuel Process. Technol., 150, 141, 2016
  3. Wang Y, Tan H, Dong K, Liu H, Xiao J, Zhang J, Appl. Therm. Eng., 118, 283, 2017
  4. Lee BE, Fletcher CAJ, Shin SH, Kwon SB, Fuel, 81, 2001, 2002
  5. Zheng Z, Yang W, Wang H, Zhou A, Cai Y, Zeng G, Xu H, Energy, 220, 119699, 2021
  6. Han H, He Y, Tao W, Li Y, Int. J. Heat Mass Transf., 72, 210, 2014
  7. Lu H, Lu L, Jiang Y, Appl. Therm. Eng., 110, 150, 2017
  8. Mu L, Zhao L, Yin H, Appl. Therm. Eng., 44, 57, 2012
  9. Hong W, Wang X, Korean J. Chem. Eng., 35, 1517, 2018
  10. Mu L, Wang S, Zhai Z, Shang Y, Zhao C, Zhao L, Yin H, J. Energy Inst., 93, 1481, 2020
  11. Wang F, He Y, Tang S, Tong Z, Int. J. Heat Mass Transf., 112, 367, 2017
  12. Cai Y, Tay K, Zheng Z, Yang W, Wang H, Zeng G, Li Z, Boon SK, Subbaiah P, Appl. Energy, 230, 1447, 2018
  13. Peter MW, Alan NS, David OL, Larry SM, János MB, Adel FS, Prog. Energy Combust. Sci., 16, 327, 1990
  14. Brink A, Lindberg D, Hupa M, de Tejada ME, Paneru M, Maier J, Fuel Process. Technol., 141, 210, 2016
  15. Han H, He Y, Tao W, Li Y, Int. J. Heat Mass Transf., 72, 210, 2014
  16. Konstandopoulos AG, J. Aerosol Sci., 37, 292, 2006
  17. El-Batsh H, Haselbacher H, ASME Paper. GT-2002-30600 (2002).
  18. Toscano C, Ahmadi G, J. Adhes., 79, 175, 2010
  19. Pan Y, Si F, Xu Z, Romero CE, Powder Technol., 210, 150, 2011
  20. Wang F, He Y, Tong Z, Tang S, Int. J. Heat Mass Transf., 104, 774, 2017
  21. Tang S, Wang F, Ren Q, He Y, Fuel, 203, 725, 2017
  22. Zhang Z, Chen Q, Atmos. Environ., 43, 319, 2008
  23. Sun K, Indoor Built Environ., 20, 300, 2011
  24. Jiang H, Lu L, Sun K, Build. Environ., 45, 1184, 2009
  25. Luo M, Zhao L, Li S, J. Chin. Soc. Power Eng., 36, 883, 2016
  26. Brach RM, Dunn PF, Aerosol Sci. Technol., 16, 51, 1992
  27. Wang F, He Y, Tang S, Tong Z, Chin. Sci. Bull., 62, 1292, 2017
  28. Israel R, Rosner DE, Aerosol Sci. Technol., 2, 45, 1982
  29. Žukauskas AA, Ulinskas RV, Heat Transf. Eng., 6, 19, 1985