Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.2, 284-289, 1999
UV/H2O2 산화 공정에서 페놀의 산화분해 반응에 대한 고주파 조사의 영향
Effect of Microwave on Oxidative Degradation of Phenol in UV/H2O2 Oxidation Process
본 연구에서는 phenol 수용액의 산화분해를 향상시키기 위해서 고급산화 공정을 고주파 조사와 결부시켰다. 열적 효과를 배제한 상태에서, 이와 같은 새로운 공정은 기존의 UV/H2O2공정과 비교했을 때 산화분해 반응속도를 상당히 촉진시킨다. 예를 들면, 반응속도는 50 %까지, TOC에 기초한 제거효율은 60 %이상 증가하였다. Phenol수용액의 산화과정에서 hydroquinone, catechol, maleic acid, glyoxalic acid, formic acid 등과 같은 여러 종류의 중간체들이 HPLC분석기에 의해 관찰되었다. Hydroquinone 및 catechol과 같은 벤젠고리 중간체들은 고주파 조사 씨스템을 가진 UV/H2O2공정이 기존의 UV/H2O2공정에서 보다 훨씬 빠르게 생성 및 분해되었다. 새로운 공정의 높은 효율은 고주파가 극성분자들을 격렬하게 진동시키기 때문에 반응물 분자들이 높은 여기상태를 가지고 또한 반응물들간의 물질전달 속도를 증진시켜서 산화 반응을 촉진시킬 수 있다는 사실들로부터 기인되는 것으로 판단된다.
In this study, to improve oxidative degradation of aqueous phenol, an advanced oxidation process of UV/H2O2 was combined with microwave irradiation. This new process, comparing with a conventional UV/H2O2 process, was found to considerably accelerate the oxidative degradation rate. For example, it accelerates up to 50 % increase of the reaction rate and more than 60 % increase of the removal efficiency based on TOC values, without any thermal effect. In the course of the oxidative degradation of aqueous phenol, several kinds of intermediates, such as hydroquinone, catechol, maleic acid, glyoxalic acid, formic acid, and etc., could be observed by HPLC analyzer. Benzene ring intermediates such as hydroquinone and catechol were both formed and degraded much more rapidly in the UV/H2O2 process with microwave irradiation system than in the conventional process. High efficiency of the new process with microwave irradiation will arise probably from such facts that, since microwave violently vibrate polar substances, reactant molecules might change into high excited states to be easily oxidized and such vibration of polar substances can also improve the mass transfer rates between reactants.
[References]
  1. Lee SY, Park BK, Lee HY, HWAHAK KONGHAK, 28(2), 172, 1990
  2. Ryu K, Kwon S, Kim Y, HWAHAK KONGHAK, 35(2), 296, 1997
  3. Ihm SK, Kim KS, Choi SJ, HWAHAK KONGHAK, 19(3), 217, 1981
  4. Lee BS, Ha KS, Kim JB, HWAHAK KONGHAK, 26(6), 583, 1988
  5. Yun YS, Kweon SH, Byun YS, Kim IS, Park PW, Jeong(Park) YO, HWAHAK KONGHAK, 35(5), 705, 1997
  6. Joung SN, Ahn SH, Yoo KP, Noh MJ, Han JH, Han SH, HWAHAK KONGHAK, 36(1), 92, 1998
  7. Kang JW, J. Environ. Hi-Technol., Jan., 5, 1994
  8. Staehelin J, Hoigne J, Environ. Sci. Technol., 16(10), 676, 1982
  9. Staehelin J, Hoigne J, Environ. Sci. Technol., 19, 1206, 1985
  10. William HG, Kang JW, Douglas HC, Ozone Sci. Eng., 9, 335, 1987
  11. Guittonneau J, De Laat J, Duguet JP, Bonnel C, Dore M, Ozone Sci. Eng., 1(12), 73, 1990
  12. Schulte P, Bayer A, Kuhn F, Luy T, Volkmer M, Ozone Sci. Eng., 17, 119, 1995
  13. 수질오염 폐기물 공정시험법, 환경처 고시 제 1993-82호
  14. Shamsher SB, Ajsy KB, Ashok GC, Manhas SM, Vegesna SR, Eenest WR, J. Chem. Educ., 69(11), 938, 1992
  15. Pougnet MAB, Rev. Sci. Instrum., 64(2), 529, 1993
  16. David AC, "Microwave Heating," The AVI Publishing Co,. Westport, Connecticut, 1975