Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.2, 270-275, 1999
탄소/흑연 수정진동자의 개발과 유기 가스센서에의 응용
Development of Carbon/Graphite Quartz Crustal and Its Application to Organic Gas Sensor
본 논문은 탄소/흑연 복합재료 수정진동자의 제작과 이를 유기가스 센서로 사용하였을 때의 일반적 응답특성을 나타내었다. 탄소/흑연 복합재료막은 Pt전극의 수정진동자 한쪽 면에 고압, 고온법을 사용하여 부착시켰다. 이 후 안정성의 증대를 위해 온도범위 100℃에서 450℃까지 열처리하였다. 탄소/흑연 수정진동자의 공진특성을 평가하기 위해 임피던스 분석을 실시한 결과, 탄소/흑연을 입힌 수정진동자의 공진 어드미턴스는 지금까지 수정진동자의 가스센서법으로 사용되어 왔던 지질이 코팅된 수정진동자 보다 더 큰 어드미턴스 값을 보였다. 회분식 쎌에서의 흡착과 탈착 반응을 이용하여 탄소/흑연 수정진동자의 재현성과 센서로서의 응답안정성을 설명하였고, 마지막으로 감응성을 알코올센서로서 상업적으로 이용되고 있는 세라믹센서와 1 ppm의 에탄올을 주입하여 비교하였다. 이들 결과들을 통하여 탄소/흑연 수정진동자가 유기가스센서로서 또한 새로운 분석소자로서 유용함을 알 수 있었다.
This paper shows the properties of carbon/graphite quartz crystal and its general responses as an organic gas-sensing device. The carbon/graphite film was formed by the method of high pressure and high temperature on a side of quartz plate, which was supported by Pt electrodes. The prepared quartz crystals were heat treated in the temperature range from 100 ℃ to 450 ℃ for the enhancement of stability. The impedance analysis of the carbon/graphite quartz crystal far investigating the resonance property shows a larger admittance value than that of a lipid coated quartz crystal, which is prepared for detecting gas components in our laboratory, previously. Using the adsorption and desorption responses, the reproducibility and sensitivity are explained. The frequency responses for vaporized ethyl alcohol showed certain linearity within concentration range from 0.5 ppm to 120 ppm. The comparison of sensitivity between commercially available alcohol sensor and carbon/graphite quartz crystal is provided for a ppm of ethanol injection. The results prove the carbon/graphite quartz crystals are usable as an organic gas sensor and an analytical device.
[References]
  1. Muramatsu H, Dicks JM, Tamiya E, Karube I, Anal. Chem., 59, 2760, 1987
  2. Muramatsu H, Tamiya E, Karube I, J. Membr. Sci., 41, 281, 1989
  3. Muramatsu H, Tamiya E, Suzuki M, Karube I, Anal. Chim. Acta, 215, 91, 1988
  4. Muramatsu H, Tamiya E, Suzuki M, Karube I, Anal. Chim. Acta, 217, 321, 1989
  5. Muramatsu H, Ye X, Suda M, Sakuhara T, Ataka T, J. Electroanal. Chem., 322, 311, 1992
  6. He YF, Wang Y, Zhu GY, Wang EK, J. Electroanal. Chem., 440(1-2), 65, 1997
  7. Orata D, Buttry DA, J. Am. Chem. Soc., 109, 3574, 1987
  8. Kim JM, Chang SM, Muramatsu H, Polymer, 40(12), 3291, 1999
  9. Chang SM, Kim JM, Muramatsu H, Ataka T, Cho WJ, Ha CS, Polymer, 37(16), 3757, 1996
  10. Kim JM, Chang SM, Muramatsu H, Appl. Phys. Lett., 74, 466, 1999
  11. Sauerbrey GZ, Phyziks, 155, 206, 1959
  12. Choi SA, Kim SR, Kim JD, Park MS, Chang YK, Chang SM, Sens. Mater., 8(8), 512, 1996
  13. Chang SM, Iwasaki Y, Suzuki M, Tamiya E, Karube I, Muramatsu H, Anal. Chim. Acta, 249, 323, 1991
  14. Krim J, Widom A, Phys. Rev., B, Condens. Matter, 38(17), 184, 1988
  15. Krim J, Solina DH, Chiarello R, Phys. Rev. Lett., 66(2), 181, 1991
  16. Buttry DA, Ward MD, Chem. Rev., 92, 1355, 1992
  17. Richard CE, Michael DW, J. Am. Chem. Soc., 110, 8623, 1988
  18. Park JH, Jun JH, Hwang KS, Lee WK, HWAHAK KONGHAK, 33(3), 301, 1995
  19. Takeuchi Y, Yanagisawa K, Tanaka Y, Tsuruoka N, Korean J. Chem. Eng., 14(5), 377, 1997
  20. Ikarashi Y, Blank CL, Suda Y, Kawakabo Y, Maruyama Y, J. Chromatogr. A, 718, 267, 1995
  21. Kawakubo T, Suda Y, Negishi A, Kaneko H, Tanso, 16, 201, 1995
  22. Kinoshita H, Suda Y, Kawakubo T, Ikeda T, Bunseki Kagaku, 43, 709, 1994
  23. Jonathan AS, Anal. Chem., 58, 1033, 1986
  24. Miyawaki O, Wingard LB, Biotechnol. Bioeng., 26, 1364, 1984
  25. Muramatsu H, Ye X, Suda M, Sakuhara T, Ataka T, J. Electroanal. Chem., 314, 279, 1991
  26. Muramatsu H, Tamiya E, Karube I, Anal. Chim. Acta, 251, 135, 1991
  27. Muramatsu H, Tamiya E, Karube I, Anal. Chem., 60, 2142, 1988
  28. Muramatsu H, Tamiya E, Karube I, Anal. Chim. Acta, 225, 399, 1989
  29. Muramatsu H, Kimura K, Anal. Chem., 64, 2502, 1992
  30. Muramatsu H, Egawa A, Ataka T, J. Electroanal. Chem., 388(1-2), 89, 1995