Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.2, 250-261, 1999
Dry Sorbent Injection에 의한 배가스 처리: Calcium계와 금속산화물 흡착제를 이용한 SO2 제거
Emission Control of Flue Gas by Dry Sorbent Injection: SO2 Removal by Calcium-Based and Metal Oxide Sorbents
광양제철소에 설치되어 있는 DSI공정에 대한 SO2제거의 최적 조건을 얻기 위하여 여러 가지 실험 변수들에 따른 Ca계 흡착제의 반응성을 고찰하였다. 현재 사용되고 있는 Ca계 흡착제의 가장 큰 단점인 낮은 이용도를 보완할 목적으로 CuO, Fe2O3, TiO2, ZnO등과 같은 금속산화물 흡착제의 탈황능을 고찰하였다. 반응온도에 따른 흡착제의 탈황능을 살펴본 결과, 현재 흡착제가 투입되고 있는 250 ℃ 영역에서는 5 %미만의 낮은 탈황능을 보인 반면에 SO2가 발생된 후 열교환기와 안정기로부터 배출되는 800-900 ℃영역에서는 최고 60%정도의 전화율을 보였다. 따라서 흡착제의 투입지점을 고온영역인 안정기의 출구 쪽으로 이동시킴으로써 더 높은 SO2 제거효율을 얻게 될 것으로 기대된다. 다른 금속산화물에 대한 탈황능을 고찰해 본 결과, 400 ℃이하의 저온영역에서는 CuO가 다른 금속산화물에 비해 우수한 탈황능을 보였지만 450 ℃이상에서는 Ca계 흡착제의 반응성이 더 좋음을 알 수 있었다.
In order to obtain the optimal conditions for dry sorbent injection process of Kwangyang steel Co., SO2, removal efficiency of calcium-based sorbent was examined at various experimental conditions. Development of metal oxide sorbents such as CuO, Fe2O3, TiO2 and ZnO was carried out to compensate for low utilization of calcium-based sorbent. Removal efficiency of sorbent was below 5 % at 250 ℃, the temperature of present injection point, and was maximum 60% at 800-900 ℃, the temperature of downstream of heat exchanger and stabilizer. Therefore, present injection point must be changed to higher temperature region. Comparison of removal efficiency of calcium-based sorbent and various metal oxide sorbents revealed that CuO was superior to the other sorbents below 400 ℃ and calcium-based sorbent was favorable at high temperature above 450 ℃.
[References]
  1. Ji PS, Park TJ, Kim JJ, Chem. Ind. Technol., 11, 14, 1993
  2. Chappell J, Lachapelle DG, Kaplan N, "Fundamental Research and Process Development," EPRI Report, 1, 35-1, 1985
  3. Rosenhoover WA, Yoon H, Consolidation Coal Company Report, 1, 1989
  4. Toshinori O, Kenro T, Daizo K, Takehiro F, J. Chem. Eng. Jpn., 18(5), 432, 1985
  5. Muzio LJ, Offen GR, JAPCA, 37(5), 642, 1987
  6. Hartman M, Tranka O, AIChE J., 39, 615, 1993
  7. Alshawabkeh A, Matsuda H, Hasatani M, AIChE J., 43(1), 173, 1997
  8. Beittel R, Gooch JP, Dismukes EB, Muzio LJ, "Studies of Sorbent Calcination and SO2-Sorbent Reactions in a Pilot-Scale Furnace," Presented at the First Joint Symposium on Dry Sorbent SO2 and Simultaneous SO2/NOx Control Technologies, San Diego, California, July, 16-1, 1985
  9. Hsia C, Pierre GR, Raghunathan K, Fan LS, AIChE J., 39(4), 698, 1993
  10. Marcilly C, Courty P, Delmon G, J. Am. Ceram. Soc., 53, 56, 1970
  11. Borgwardt RH, Chem. Eng. Sci., 44(1), 53, 1989
  12. Lee YS, Ph.D. Dissertation, Hanyang University, 1994
  13. Marsh DW, Ulrichson DL, Chem. Eng. Sci., 40(3), 423, 1985
  14. Fields RB, Burdett NA, Davidson JF, Trans. Ind. Chem. Eng., 57, 276, 1979
  15. Hatfield FD, Dim YK, Mullins RC, McClellan GH, NTIS. Publication, PB202, 407, 1970
  16. Stouffer MR, Yoon H, AIChE J., 35, 8, 1989
  17. Brogwardt RH, Bruce KR, Blake J, Ind. Eng. Chem. Res., 26(10), 1993, 1987
  18. Pigford RL, Silger G, Ind. Eng. Chem. Process Des. Dev., 12, 85, 1973
  19. Wen CY, Ishida M, Environ. Sci. Technol., 7, 703, 1973
  20. Doraiswamy LK, Sharma MM, "Heterogeneous Reactions-Vol. 1 Gas-Solid and Soild-Soild Reactions," John Wiley & Sons, Inc., 1984
  21. Teixeira DP, Lott TA, Muzio LJ, "Dry Sorbent SO2 Control for New Power Plants: Burning Low Sulfur Western Coals," Presented at the Second Joint Symposium on Dry SO2/NOx Control Technologies, Rayleigh, North Carolina, June, 2-6, 1986
  22. Borgwardt RH, Bruce KR, Blake J, "EPA Experimental Studies of the Mechanisms of Sulfur Capture by Limestone," Presented at the First Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies, San Diego, California, July, 13-16, 1985