Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.2, 243-249, 1999
PDMS막과 Zeolite/PDMS막에 의한 휘발성 유기염화물의 수착특성
Sorption Characteristics of Volatile Organic Chlorides in PDMS and Zeolite/PDMS Membranes
Polydimethylsiloxane(PDMS)막과 PDMS에 소수성 zeolite를 충전제로 혼합한 zeolite/PDMS막을 제조하고 휘발성 유기염화물의 수착특성을 실험적으로 연구하였다. 수착실험은 dichloromethane(DCM), chloroform(CF), perchloromethane(PCM), dichloroethylene(DCE), trichloroethylene(TCE), perchloroethylene(PCE), chlorobutane(CBu) 및 chlorobenzene(CB)등을 대상으로 25 ℃에서 수행하였다. PDMS막에 의한 포화수착량은 PCM>TCE>CF>PCE>DCE>DCM>CBu>CB의 순서로 감소하였으며, 수착등온선은 Flory-Huggins식과 잘 일치하였다. Zeolite/PDMS막에 의한 수착등온선은 zeolite에 의한 Lang-muir 등온선과 고분자메이트뤽스에 의한 Flory-Huggins 등온선이 결합된 형태를 나타내었다. 활동도가 낮을 경우에는 zeolite의 함량이 증가할수록 유기염화물의 수착량이 증가하였으나 활동도가 높을 경우에는 zeolite의 함량이 증가할수록 오히려 수착량이 감소하였다.
Poly(dimethylsiloxane)(PDMS) and Zeolite-filled PDMS(zeolite/PDMS) membranes were prepared, and the sorption characteristics of volatile organic chlorides were experimentally investigated. Seven organic such as dichloromethane(DCM), chloroform(CF), perchloromethane(PCM), dichloroethylene(DCE), trichloroethylene(TCE), perchloroethylene(PCE), chlorobutane(CBu) and chlorobenzene(CB) were sorbed in the PDMS and zeolite/PDMS membranes at the temperature of 25 ℃. The sorption of organic chlorides on the PDMS membrane decreased in the order of PCM>TCE>CF>PCE>DCE>DCM>CBu>CB, and the sorption isotherms were in good agreement with Flory-Huggins theory. The sorption isotherms in zeolite/PDMS membranes showed combined types of two different isotherms : i) Langmuir isotherms in microporous zeolite and ii) Flory-Muggins isotherms in polymer matrix. Under the conditions of lower activities, the sorption capacities of organic chlorides in zeolite/PDMS membranes increased with increasing content of zeolites. At higher activities, however, the sorption capacities of organic chlorides decreased with increasing content of zeolites.
[References]
  1. Oh BK, Ha SY, Ha ST, Lee YM, Membr. J., 4, 57, 1994
  2. Nijhuis HH, Mulder MHV, Smolders CA, J. Appl. Polym. Sci., 47, 2227, 1993
  3. te Hennepe HJC, Bargeman D, Mulder MHV, Smolders CA, J. Membr. Sci., 35, 39, 1987
  4. Mulder M, "Basic Principles of Membrane Technology," 2nd ed., Kluwer, Dordrecht, The Netherlands, 1996
  5. Hennepe HJ, Boswerger WB, Bargeman D, Mulder MH, Smolders CA, J. Membr. Sci., 89(1-2), 185, 1994
  6. Kim SJ, Kim JH, Kim YJ, "Unit Operations," Dong-hwa, Seoul, 1996
  7. Flanigen EM, Bennett JM, Grose RW, Cohen JP, Patton RL, Kirchner RM, Nature, 271, 512, 1978
  8. Brown WR, Jenkins RB, Park GS, J. Polym. Sci., 41, 45, 1973
  9. Favre E, Nguyen QT, Schaetzel P, Clement R, Neel J, J. Chem. Soc.-Faraday Trans., 89, 4339, 1993
  10. Favre E, Schaetzel P, Nguygen QT, Clement R, Neel J, J. Membr. Sci., 92(2), 169, 1994
  11. Blume I, Schwering PJF, Mulder MHV, Smolders CA, J. Membr. Sci., 61, 85, 1991
  12. Huang RYM, "Pervaporation Membrane Separation Process," a) Chap. 1, b) Chap. 5, University of Waterloo, Canada, 1991
  13. Goethaert S, Dotremont C, Kuijpers M, Michiels M, Vandecasteele C, J. Membr. Sci., 78, 135, 1993
  14. Dotremont C, Brabants B, Geeroms K, Mewis J, Vandecasteele C, J. Membr. Sci., 104(1-2), 109, 1995