Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.2, 229-234, 1999
산화구리가 담지된 씰리카-알루미나 흡수제의 황화반응 속도론
Sulfation Kinetics of CuO Loaded Silica-Alumina Sorbent
열중량 분석기에서 입자크기, 기체유속, SO2농도 및 반응온도를 변수로 하여 SO2가스와 CuO/SiO2-Al2O3흡수제의 탈황반응 속도론을 고찰하였다. CuO/SiO2-Al2O3의 황화반응에서 담체인 SiO2-Al2O3의 SO2와의 황화반응은 무시할 만하였다. CuO/SiO2-Al2O3 흡수제의 탈황반응에 대한 반응차수는 1차로 나타났으며, 입자크기가 증가할수록 입자내의 확산저항이 증가하여 반응속도는 감소하였다. 0.1 mm의 입자크기를 갖는 흡수제의 탈황반응 전환율은 균일반응모델값과 일치하였으며 속도상수의 활성화에너지는 43.8kJ/mol 이었다. 0.3 mm 이상의 입자크기에서 실험결과는 수축핵모델의 생성물 확산율속 반응식과 일치하였으며 유효확산계수의 활성화에너지는 60kJ/mol 이었다.
Sulfation reaction kinetics of CuO/SiO2-Al2O3 sorbent with SiO2 gas have been determined with the variations of particle size, gas flow rate, SiO2 concentration and reaction temperature in a thermo-gravimetirc analyzer(TGA). Reactivity of SiO2-A1203 support with SOa gas is found to be negligibly small during the suuation reaction. The order of sulfation reaction with respect to the CuO/SiO2-Al2O3 sorbent is first order and the reaction rate decreases with increasing the particle size (dp) due to the increase of the diffusion resistance. Sulfation conversion of the sorbent (dp=0.1 mm) follows the uniform reaction model and the activation energy is found to be 43.8 kJ/mol. When the particle size increases above 0.3 mm, the overall reaction is controlled by the diffusion of SO2 through the product layer, and the activation energy of the effective diffusivity is 60 kJ/mol.
[References]
  1. Dautzenberg FM, Nader JE, van Ginneken AJJ, Chem. Eng. Prog., 67, 86, 1971
  2. Jeong SM, Yoo KS, Kim SD, HWAHAK KONGHAK, 35(1), 116, 1997
  3. Yeh JT, Demisky RJ, Strakey JP, Joubert JI, Environ. Prog., 4, 223, 1985
  4. Yoo KS, Chu KJ, Gong SY, Hwang KS, Kim KT, J. Korean Soc. Environ. Eng., 19, 447, 1997
  5. Chu KJ, Yoo KS, Kim KT, Mater. Res. Bull., 32(2), 197, 1997
  6. Centi G, Riva A, Passarini N, Brambilla G, Hodnett BK, Delmon B, Ruwet M, Chem. Eng. Sci., 45, 2679, 1990
  7. Yoo KS, Jeong SM, Kim SD, Park SB, Ind. Eng. Chem. Res., 35(5), 1543, 1996
  8. Lim YI, Yoo KS, Jeong SM, Kim SD, Lee JB, Choi BS, HWAHAK KONGHAK, 35(1), 83, 1997
  9. Harriot P, Markussen JM, Ind. Eng. Chem. Res., 31, 373, 1992
  10. Jeong SM, Kim SD, Ind. Eng. Chem. Res., 36(12), 5425, 1997
  11. Yeh JT, Drummond CJ, Joubert JI, Environ. Prog., 6, 44, 1987
  12. Dassori CG, Tierney JW, Shah YT, AIChE J., 34, 1878, 1998
  13. Centi G, Passarini N, Perathoner S, Riva A, Ind. Eng. Chem. Res., 31, 1947, 1992
  14. Yoo KS, Kim SD, Park SB, Ind. Eng. Chem. Res., 33(7), 1786, 1994
  15. Centi G, Passarini N, Perathoner S, Riva A, Ind. Eng. Chem. Res., 31, 1956, 1992
  16. DeBerry DW, Sladek KJ, Can. J. Chem. Eng., 49, 781, 1971
  17. Strohmeier BR, Leyden DE, Field RS, Hercules DM, J. Catal., 94, 514, 1985
  18. Kiel JH, Prins W, van Swaaij WPM, Appl. Catal. B: Environ., 1, 41, 1992
  19. Ranz WE, Marshall WR, Chem. Eng. Prog., 48, 1415, 1952
  20. Centi G, Passarini N, Perathoner S, Riva A, "Environmental Catalysis," ACS Symposium Series 552, Washington D.C., 233, 1994
  21. Fung DPC, Kim SD, Korean J. Chem. Eng., 7(2), 109, 1990
  22. Chung SH, Kim DC, Cho CH, Park CY, HWAHAK KONGHAK, 28(2), 184, 1990
  23. Ishida M, Wen CY, AIChE J., 14, 311, 1968