Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.2, 198-204, 1999
입상활성탄과 활성탄소섬유에 의한 수용액상에서의 Cr(Vl), Pb(II), Ni(Il)의 흡착특성
Adsorption Characteristics of Cr(Vl), Pb(II) and Ni(II) by Granular Activated Carbon and Activated Carbon Fiber in Aqueous Solution
입상활성탄과 활성탄소섬유에 의한 수용액상에서의 크롬(VI), 납(II), 니켈(II)의 흡착특성을 연구하였다. 입상활성탄의 경우 평형흡착량은 크롬, 납, 니켈 순이었으며, 활성탄소섬유의 경우 평형흡착량은 납, 크롬 니켈의 순이었다. 활성탄소 섬유가 활성탄에 비해 중금속이온에 대한 훨씬 높은 흡착능을 보여주었으며, 흡착속도 또한 활성탄소섬유의 세공특성으로 인해 매우 빨랐다. 흡착에 영향을 주는 인자 중 pH에 의한 변화에서 크롬, 납, 니 켈의 최적 pH는 3-4, 11, 12이었으며, 활성탄소섬유는 최적 pH가 납, 크롬, 니켈에 대해 각각 8.0, 3.0, 9.0근방이었다. 입상활성탄과 활성탄소섬유 두 가지 흡착제 모두에서 평형흡착량은 Langmuir등온식으로 잘 표현할 수 있었다
The adsorption characteristics of Cr(VI), Pb(II), Ni(II) in aqueous solution using activated carbon and activated carbon fiber has been studied. In case of activated carbon, the equilibrium adsorbed amount of Cr(VI) showed the largest value and followed by Pb(II) and Ni(II) respectively in a continuous stirred batch system. However, in case of activated carbon fiber, the equilibrium adsorbed amount decreased in order of Pb(II), Cr(VI) and Ni(II). The activated carbon fiber showed much higher adsorption capacity and adsorption rate for the heavy metal ions than the granular activated carbon. In the activated carbon, the maximum adsorption amount of Cr(VI) occurred near pH 3-4, while that of Pb(II) and Ni(II) for Pb(ll), Cr(VI) and Ni(ll), respectively. The Langmuir isotherm agreed well with experimental data for both activated carbon and activated carbon fiber.
[References]
  1. Klaassen CD, "Toxicology," Memillau Publishing Company, 1986
  2. McAnally SL, Benefield, Reed RB, Sep. Sci. Technol., 19, 191, 1984
  3. Periasamy K, Namasivayam C, Ind. Eng. Chem. Res., 33(2), 317, 1994
  4. Taylor RM, Kuennen RW, Environ. Prog., 13, 65, 1994
  5. Reed BE, Arunachalam S, Thomas B, Environ. Prog., 13, 60, 1994
  6. Jung CH, Jung HH, Moon JK, Oh WZ, Ryu SK, HWAHAK KONGHAK, 35(4), 538, 1997
  7. Shim JW, Jung HH, Jung CH, Oh WZ, Ryu SK, HWAHAK KONGHAK, 35(2), 162, 1997
  8. Shim JW, Lee SM, Ryu SK, HWAHAK KONGHAK, 36(1), 68, 1998
  9. James RO, Healey RW, J. Colloid Interface Sci., 40, 42, 1997
  10. Huang CP, Blankenship DW, Water Res., 18, 37, 1984
  11. Suzuki M, "Adsorption Engineering," Kodansha, 1990
  12. Jayson GG, Lawless TA, J. Colloid Interface Sci., 86, 397, 1982
  13. Ryu SK, Chem. Ind. Technol., 12(1), 6, 1994
  14. Huang CP, Wu MH, J. Water Pollut. Control Fed., 47, 2437, 1975
  15. Young GT, Chessick JJ, J. Phys. Chem., 60, 394, 1956
  16. Shaw DJ, "Introduction to Colloid Surface Chemistry," 2nd ed., Butterworths, 1970
  17. Zettlemoyer AC, Ind. Eng. Chem., 57, 27, 1965
  18. Huang CP, Wu MH, Water Res., 11, 673, 1977
  19. Reed BE, J. Environ. Eng., 121(9), 653, 1995
  20. Corapciouglu MO, Huang CP, Water Res., 21, 1031, 1987
  21. Brian ER, Sujith KN, Sep. Sci. Technol., 27, 1985, 1992
  22. Matsumoto MR, Kyles JH, Chem. Eng. Commun., 86, 1, 1989
  23. Hirokazu O, Toshiyuki N, Tetufumi K, Tanso, 176, 20, 1997