Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.4, 601-606, 1998
장치비용과 에너지 회수비용을 함께 고려힌 다품종 회분식 공정의 최적 설계 및 생산계획
Optimal Design and Production Plan of Multi-Product Batch Processes Considering Equipments Costs and Energy Savings
연속식 공정에서와는 달리 회분식 공정에서 에너지 회수를 위한 열교환을 하기 위해서는 부득이 생산일정을 변경하여야만 하고, ZW policy를 따르는 대부분의 회분식 공정에서는 이럴 경우 생산주기가 늘어나게 되어 결국은 회분식장치 크기의 증가가 요구된다. 늘어난 장치 설비비용의 부담으로 인해 공정설계 엔지니어들은 열교환의 가능성을 무시하고 초기설계를 마치는 경우가 많다. 본 논문에서는 다품종 화분식 공정의 생산일정, 필요한 회분식장치의 크기, 그리고 열교환에 필요한 수학적인 식들로써 구성된 혼합정수 비선형 프로그램의 최적화 해를 구하여서 회분식 공정에서의 열교환 가능성과 그 경제성을 검토해 보고자 한다. 이해를 돕기 위하여 열교환 가능성이 있는 다품종 회분식 공정을 예로 들어 본 연구 결과를 적용해 보았다.
Differently from continuous processes, the processing schedule of batch processes should be modified for heat exchange between batch streams. In most batch processes in which ZW policy is adopted, the heat integration causes the increased production cycle time that requires the bigger batch equipments sizes. Process design engineers usually finish the initial batch process design neglecting the possibilities of heat integration due to the increased equipment costs in that case. In this study, the schedule of multi-product processes, the required equipments sizes and the heat exchange between batch streams are mathematically formulated in a mixed integer nonlinear programming. A solution of this formulation can be readily obtained with a commercial MINLP solver. Numerical examples are presented to illustrate the possibilities of heat exchange in a multi-product batch process.
[References]
  1. Brooke A, Kendrick D, Meeraus A, "GAMS User's Manual," Scientific Press, 1988
  2. Corominas J, Espuna A, Puigjaner L, Comput. Chem. Eng., 18(11-12), 1043, 1994
  3. Jung SH, Lee IB, Yang DR, Chang KS, Korean J. Chem. Eng., 11(3), 162, 1994
  4. Kemp IC, Deakin AW, Chem. Eng. Res., 67, 495, 1989
  5. Lee B, Reklaitis GV, Comput. Chem. Eng., 19(8), 883, 1995
  6. Mignon D, Hermia J, Comput. Chem. Eng., S17, S51, 1993
  7. Papageorgiou LG, Shah N, Pantelides CC, Ind. Eng. Chem. Res., 33(12), 3168, 1994
  8. Peters MS, Timmerhaus KD, "Plant Design and Economics for Chemical Engineers," McGraw-Hill, New York, NY, 1991
  9. Rippin DWT, Comput. Chem. Eng., 7, 43, 1983
  10. Vaklievabancheva N, Ivanov BB, Shah N, Pantelides CC, Comput. Chem. Eng., 20(8), 989, 1996
  11. Vaselenak JA, Grossmann IE, Westerberg AW, Ind. Eng. Chem. Process Des. Dev., 25, 357, 1986
  12. Wellons MC, Reklaitis GV, Comput. Chem. Eng., 13, 213, 1989
  13. Lee HK, Jung JH, Lee IB, Chang KS, HWAHAK KONGHAK, 32(4), 581, 1994
  14. Yoo DJ, Lee HK, Jung JH, Lee IB, HWAHAK KONGHAK, 34(6), 742, 1996