Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.4, 517-523, 1998
냉동/해동법을 이용한 폴리비닐알콜 하이드로젤의 제조 및 물질전달 특성
The Preparation of Poly(vinylalcohol) Hydrogel by the Freezing/Thawing Method and Its Mass Transfer Characters
냉동/해동 반복횟수, 냉동 시간, 초기 폴리비닐알콜 용액 농도를 제조변수로 하여, 냉동/해동법으로 미생물의 고정화 담체로 사용하기 위한 폴리비닐알콜 하이드로젤을 제조하였다. 하이드로젤의 격자 크기, 가교점 사이의 평균 분자량, 가교밀도 등을 측정·계산하여 기본특성을 조사하고, 글루코오스 물질전달 실험을 행하였다. 냉동/해동 반복횟수가 커질수록, 냉동 시간이 길어질수록, 그리고 초기 폴리비닐알콜 용액농도가 증가할수록 하이드로젤은 조밀한 결정구조를 가졌으며, 격자 크기 분포가 68-266Å, 평형부피 팽윤비의 범위가 6-27인 하이드로젤을 얻을 수 있었다. 글루코오스 물질전달 계수는 2.478×10-6-7.22×10-7cm2/s의 범위로 변하였다.
Polyvinylalcohol hydrogels for microbial immobilization were prepared by freezing/thawing method by varying several parameters such as freezing/thawing cycle number, freezing time and initial PVA solution concentration. By determining and calculating mesh size, average molecular weight between crosslinks and crosslinking density, the characteristics of prepared hydrogels were investigated and then glucose permeability experiments were carried out. The more freezing/thawing cycle number, the longer freezing time, and the concentrated initial PVA solution, the denser the hydrogel. Mesh size was 68-266Å and equilibrium volume swelling ratio was from 6 to 27. Glucose diffusion coefficients were 2.478×10-6-7.22×10-7cm2/s.
[References]
  1. Karel SF, Libicki SB, Robertson CR, Chem. Eng. Sci., 40, 1321, 1985
  2. Chibata I, "Kojounghwa Saengche Chockmae," Dae Kwang Munhwasa, 1985
  3. Slowinski W, Charm SE, Biotechnol. Bioeng., 15, 973, 1973
  4. Ghommidh C, Navaro JM, Duand G, Biotechnol. Bioeng., 24, 605, 1982
  5. Hickey AS, Peppas NA, J. Membr. Sci., 107(3), 229, 1995
  6. Yokohama F, Shimamura MK, Ikawa T, Monobe K, Colloid Polym. Sci., 595, 1986
  7. Stauffer SR, Peppas NA, Polymer, 33, 3932, 1992
  8. Okazaki M, Hamada T, Fujii H, Mizobe A, Matsuzawa S, J. Appl. Polym. Sci., 58(12), 2235, 1995
  9. Okazaki M, Hamada T, Fujii H, Kusudo O, Mizobe A, Matsuzawa S, J. Appl. Polym. Sci., 58(12), 2243, 1995
  10. Asano H, Myoga H, Toyao M, Water Sci. Technol., 26, 2397, 1992
  11. Asano H, Myoga H, Toyao M, Water Sci. Technol., 26, 1037, 1992
  12. Cha WI, Hyon SH, Ikada Y, Makromol. Chem., 194, 2433, 1993
  13. Sun YH, "A Study on the Hydrogen Production by Immobilized Photosynthetic Whole Cells," Ph.D. Thesis, Yonsei Univ., Seoul, Korea, 1990
  14. Im JH, "A Study on the Hydrogen Production by Fluidized Bed Reactor of Photosynthetic Bacteria," Master Thesis, Yonsei Univ., Seoul, Korea, 1993
  15. Peppas NA, Reinhart CT, J. Membr. Sci., 15, 275, 1983
  16. Reinhart CT, Peppas NA, J. Membr. Sci., 18, 227, 1984
  17. Ahn TW, "Koboonja Moolsung," Dae Kwang Munhwasa, 1985
  18. Gudeman LF, Peppas NA, J. Appl. Polym. Sci., 55(6), 919, 1995