Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.33, No.6, 787-796, 1995
5-methyl-3-one-hexanal에 의한 구리의 추출평형 및 추출속도
Equilibrium and Kinetics of Copper Extraction by 5-methyl-3-one-hexanal
Sodium amide에 의한 ethylformate와 methylisobutyl ketone의 반응으로 ketoaldehyde 추출제의 하나로서 5-methyl-3-one-hexanal(MOH)을 합성하고, MOH-클로로포름에 의한 구리의 추출평형 및 속도실험을 통하여 추출특성을 고찰하였다. 흡광도를 측정하여 추출제의 해리상수와 분배계수,구리 킬레이트의 안정도 상수와 분배계수 및 총괄 추출 평형상수 등을 구하고, 추출속도에 대한 수소이온과 구리 및 추출제 농도의 영향을 검토하였다. 합성한 추출제에 의한 구리의 추출율은 pH4 이상에서 95% 이상이었고, Cu-Zn-Cd 혼합 금속으로부터 구리의 선택적 추출이 가능하였다. 추출 평형식은 추출 화학종이 MR2인 M2++2HR=MR2+2H+로 표시되었고, 추출속도는 추출제 농도에 비례하고 수소이온 농도의 1/2승에 반비례하며 구리 농도의 1/2승에 비례하는 것으로 나타나 R=kCHR(CM/CH)0.5로 표시할 수 있다.
To investigate the extraction characteristics of equilibrium and kinetics in the extraction of copper by ketoaldehyde-chloroform, 5-methyl-3-one-hexanal was synthesized as a chelating extractant of ketoaldehyde from ethyl formate and methylisobutylketone with sodium amide. The equilibrium constants such as the dissociation constant and the partition with sodium amide. The equilibrium constants such as the dissociation constant and the partition coefficients of ketoaldehyde, the stability constant and the partition coefficient of copper complex, and the overall equilibrium constant in the extraction of copper were determined. The effects of the concentration of hydrogen and copper ion, and of ketoaldehyde on the initial rate of extraction were examined. Percent extraction of copper by ketoaldehyde was higher than 90%, and selective extraction of copper from Zn-Cu-Cd mixture was possible. The equilibrium reaction was found to be M2++2HR=MR2+2H+ with the extracted species of MR2. The experimental equation of extraction rate was ex-pressed as R=k CHR(CM/CH)0.5.
[References]
  1. Inoue K, Nakashio F, 化學工學, 46, 164, 1982
  2. Cohen O, Arad D, Schmuckler G, Solvent Extraction Ion Exchange, 9, 703, 1991
  3. Dansei PR, Chiarizia R, Vandegrift GF, J. Phys. Chem., 84, 3455, 1980
  4. Kondo K, Kawabata H, Momota K, Narikiyo N, Nakashio F, J. Chem. Eng. Jpn., 20, 228, 1990
  5. Rod V, Gruberova A, Chem. Eng. Res. Des., 63, 89, 1985
  6. Komatsu Y, Honda H, Sekine T, J. Inorg. Nucl. Chem., 38, 1861, 1976
  7. Flett DS, Okuhara DN, Spink DR, J. Inorg. Nucl. Chem., 35, 2471, 1973
  8. Miyake Y, Imanishi Y, Katayama Y, Hamatani T, Teramoto M, J. Chem. Eng. Jpn., 19, 117, 1986
  9. Shin JH, Jeong KS, Lee SH, Park SW, Park DW, J. Korean Ind. Eng. Chem., 4(4), 672, 1993
  10. Kondo K, Takahashi S, Tsuneyuki T, Nakashio F, J. Chem. Eng. Jpn., 11, 193, 1978
  11. Shin JH, Lee HG, Jeong KS, Lee SH, Kim JH, HWAHAK KONGHAK, 32(2), 256, 1994
  12. Shin JH, Jeong KS, Lee SH, Lee JY, HWAHAK KONGHAK, 32(3), 367, 1994