Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.33, No.4, 503-510, 1995
303.15K에서 CuCl2-Methanol-Ethanol계의 기액평형
Vapor-Liquid Equilibrium of CuCl2-Methanol-Ethanol Systems at 303.15K
등온조건 303.15K에서 copper (II) chloride-methanol-ethanol 삼성분계의 전압이 액상조성의 함수로 보고되었다. 압력(무염 기준에서)은 실질적으로 일정한 methanol의 몰분율마다 염 농도의 함수로 측정된다. 실험값은 액상에 대하여 경험적 과잉 Gibbs 에너지 식을 적용하여, Barker의 방법을 이용한 확장회귀 절차를 통하여 환원된다. 계산된 두 가지 알코올의 기상조성을 살펴보면, methanol-ethanol 액체 혼합물에 copper(II) chloride이 추가됨에 따라 ethanol의 기상 몰분율이 증가한다(ethanol의 염석). 주어진 용매 혼합물의 조성에서, 염의 농도가 증가함에 따라 전압은 정규적으로 감소한다. 증기압저하 효과의 증가는 혼합용매에 대한 염 용해도의 증가와 대응한다.
The behavior of vapor-liquid equilibrium for copper(II) chloride-methanol-ethanol at 303.15K is presented by reporting the total pressure as function of liquid phase composition. Pressure was measured as a function of salt concentration along various lines of essentially constant methanol mole fraction(on a salt-free basis). The data were reduced by Barker’s method with extended fits using an empirical expression for the excess Gibbs energy of the liquid phase. Vapor phase compositions calculated for the two alcohols indicate that the vapor phase mole fraction of ethanol is increased(ethanol is salted out)by addition of copper(II) chloride to liquid mixtures of methanol and ethanol. Based on given solvent composition, the total pressures of the ternary mixture decrease regularly with increasing salt concentration. Increased vapor pressure depression effects correspond to increased salt solubilities in a mixed solvent.
[References]
  1. Furter NF, Adv. Chem. Ser., 155, 25, 1976
  2. Hala E, Fluid Phase Equilib., 13, 311, 1983
  3. Bekerman E, Tassios D, Adv. Chem. Ser., 155, 3, 1976
  4. Engels H, Fluid Phase Equilib., 35, 93, 1987
  5. Snder B, Fredenslund A, Rasmussen P, Chem. Eng. Sci., 41, 1171, 1986
  6. Bhethanabotla VR, Campbell SW, Fluid Phase Equilib., 62, 232, 1991
  7. Thomas S, Bhethanabotla VR, Campbell SW, J. Chem. Eng. Data, 36, 374, 1991
  8. Stephan K, Hildwein H, Recommended Data of Selected Compounds and Binary Mixtures. DE-CHEMA Chemistry Data Series, Vol. VI, Part 1-2, Frankfurt, 1987
  9. Barker JA, Aust. J. Chem., 6, 207, 1953
  10. Oh SK, Campbell SW, Fluid Phase Equilib., 76, 237, 1992
  11. Tsonopoulos C, AIChE J., 20, 263, 1974
  12. Oh SK, Ph.D. Dissertation, University of South Florida, 1993
  13. Patil KR, Tripathi AA, Pathak G, Katti SS, J. Chem. Eng. Data, 35, 166, 1990
  14. Skabichevskii PA, Russ. J. Phys. Chem., 43, 1432, 1969
  15. Ambrose D, Sparake CHS, J. Chem. Thermodyn., 2, 631, 1970
  16. Jenz GW, Tomkins RPT, "Nonaqueous Electrolytes Handbook," Vol. II, Academic Press, Troy, N.Y., 1973
  17. Ohe S, "Vapor-Liquid Equilibrium Data," Physical Sciences Data No. 43, Elsevier, 1991