Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.33, No.4, 407-421, 1995
용매-물-아세토니트릴계의 액-액 평형에서 염효과
Salt Effect in Liquid-Liquid Equilibrium for Solvent-Water-Acetonitrile System
Acrylonitrile 제조시 부산물로 생성되는 acetonitrile-water 공비혼합물에 용매로 benzene, toluene, o-xylene, ethylacetate 및 monochlorobenzene을 선택하여 25℃에서 solvent(1)-water(2)-
acetonitrile(3)계와 solvent(1)-halogen salt solution(KF, NaCl, NaBr, NaI)(2)-acetonitrile(3)계에 대한 액-액 평형 테이터를 구하였다. 각 실험 데이터를 여러 관계식들로부터 건전성을 조사하였으며, 대응선 계산치를 예측하기 위하여 대응선 실험치를 NRTL, UNIQUAC 및 modified UNIQUAC 모델식에 상호 연관시켜 각 모델 냉의 파라미터를 추산하고 대응선계산치를 구하였다. 또한 염의 종류에 따른 염첨가 효과를 고찰하였다.
In the process of manufacturing acrylonitrile, azeotrope of acetonitrile-water was come into being as by-product. Benzene, toluene, o-xylene, ethylacetate and monochlorobenzene as solvents were selected in order to determine the liquid-liquid equilibria for solvent(1)-water(2)-acetonitrile(3) and solvent(1)-halo-gen salt solution(2)-acetonitrile(3) systems. The consistency test for the experimental data was investigated using several correlations. The experimental tie line data were correlated with the NRTL, UNIQUAC and modified UNIQUAC models. The parameters contained in these models were determined. The salt effect on liquid-liquid equilibrium was also studied.
[References]
  1. Magnussen T, Ind. Eng. Chem. Process Des. Dev., 20, 331, 1981
  2. Pitzer KS, J. Am. Chem. Soc., 102, 2902, 1980
  3. Brandani V, Chianese A, Rossi M, J. Chem. Eng. Data, 30, 27, 1985
  4. Chen CC, Britt HI, Evans LB, AIChE J., 28, 588, 1982
  5. Mukhopadhyay M, Pathak AS, Ind. Eng. Chem. Process Des. Dev., 25, 733, 1986
  6. Chen CC, Evans LV, AIChE J., 32, 44, 1986
  7. Choi JS, Park DW, Rhim JN, Korean J. Chem. Eng., 3(2), 141, 1986
  8. Grinbroum B, Lavie R, Kehat E, Ind. Eng. Chem. Fundam., 24, 197, 1985
  9. Rothmund V, J. Zhysik. Chem., 33, 401, 1900
  10. Debye P, McAulay Z, Phys. Z., 26, 22, 1925
  11. Debye P, Z. Physik. Chem., 130, 56, 1927
  12. Butler JAV, J. Phys. Chem., 33, 1015, 1929
  13. Tamman G, Z. Anorg. Allg. Chem., 158, 25, 1926
  14. McDevit WF, Long FA, J. Am. Chem. Soc., 74, 1773, 1952
  15. Saravanan G, Srinivasan D, J. Chem. Eng. Data, 30, 166, 1985
  16. Ramasubramanian J, Srinivasan D, Chem. Eng. Commun., 19, 335, 1983
  17. Renon H, Prausnitz JM, AIChE J., 14, 135, 1968
  18. Abrams DS, Prausnitz JM, AIChE J., 21, 116, 1975
  19. Anderson TF, Prausnitz JM, Ind. Eng. Chem. Process Des. Dev., 17, 552, 1978
  20. Haddad P, Edimister WC, J. Chem. Eng. Data, 17, 275, 1972
  21. Othmer DF, White RE, Trueger E, Ind. Eng. Chem., 33, 1240, 1941
  22. Kradecki A, Kaczmarek B, Grazybowski J, J. Chem. Eng. Data, 20, 163, 1975
  23. Treybal RE, Weber Ld, Daley JF, Ind. Eng. Chem., 38, 817, 1946
  24. Brown TF, Ind. Eng. Chem., 40, 103, 1948
  25. Hand DB, J. Phys. Chem., 34, 1961, 1930
  26. Major CJ, Swenson QJ, Ind. Eng. Chem., 38, 834, 1946
  27. Ishida K, Bull. Chem. Soc. Jpn., 33, 693, 1960
  28. Othmer DF, Tobias PE, Ind. Eng. Chem., 34, 693, 1942
  29. Hirata M, Fujita S, Kag. Kikai, 21, 201, 1957
  30. Varhegyi G, Eon C, Ind. Eng. Chem. Fundam., 16, 182, 1977
  31. Hooke R, Jeeves TA, Assoc. Comp. Mach., 8, 212, 1961