Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.32, No.6, 875-880, 1994
Aureobasidium pullulans의 포도당전이활성에 의한 맥아당으로부터 이소말토올리고당 생산의 속도론적 고찰 및 수학적 모델
Kinetic Study and Mathematical Model for the Production of Isomalto-Oligosaccharides from Maltose by Transglucosylation of Aureobasidium pullulans
Aureobasidium pullulans의 포도당 전이활성에 의한 맥아당으로부터 이소말토올리고당 생산의 속도론을 통해 이소말토올리고당의 생성메카니즘을 제안하고 실험적으로 검증하였다. 이소말토올리고당의 생성반응은 반응초기에 맥아당으로부터 panose가 생성되고 포도당이 유리된 후, panose를 다시 기질로 이용하여 DP4 이소말토올리고당이 생성되었으며, 이 때 맥아당이 함께 유리되는 disproportionation반응메카니즘을 따랐다(Gn+Gn → Gn-1+Gn+1). 맥아당을 기질로 효소반응을 수행하고 동력학적 인자를 산출한 결과, Km, Vmax는 각각 55.6 g/l, 23.7 g/l h이었으며, 이 경우에도 포도당이 경쟁적 저해제로 작용하였고 저해상수는 6.3 g/l이었다. 제안된 모델을 검증하기 위하여 임의의 두 기질농도, 300, 500g/l 맥아당을 기질로 반응을 수행하여 수치모사 결과와 비교한 결과, 모든 반응 및 생성물들의 농도 profile이 서로 잘 일치하였다.
A mathematical model for the production of isomalto-oligosaccharides from maltose by transglucosylation reaction of Aureobasidium pullulans was proposed based on the kinetic study, and the predicted values were compared with the experimental results for two malpoise concentrations. The formation of isomalto-oligosaccharides occurred from a consecutive set of disproportionate reactions(viz. An+An→An-1+An+1). The Michaels-Menten constants for maltose and panose were 154.5g/l and 55.6g/l, respectively at 50℃. Competitive inhibition by glucose and panose was observed from kinetic analysis for the substrate maltose where the inhibition constants were 15.3g/l, 9.8g/l, respectively. In a similar manner, glucose was also proved a competitive inhibitor when panose was used as substrate, in which the inhibition constant was found to be 6.3g/l. The predicted carbohydrate profiles of the proposed model gave good agreements with the experimental results.
[References]
  1. Hayashi S, Itho K, Nonoguchi M, Takasaki Y, Imada K, J. Ferment. Bioeng., 72, 68, 1991
  2. Adachi S, Udea Y, Hashimoto K, Biotechnol. Bioeng., 26, 121, 1984
  3. Hidaka H, Hirayama M, Sumi N, Agric. Biol. Chem., 52, 1181, 1988
  4. Yun JW, Jung KH, Oh JW, Lee JH, Appl. Biochem. Biotechnol., 24-25, 299, 1990
  5. Yun JW, Jung KH, Jeon YJ, Lee JH, J. Microbiol. Biotechnol., 2, 98, 1992
  6. Kohmoto T, Fukui F, Takaku H, Mitsuoka T, Agric. Biol. Chem., 55, 2157, 1991
  7. Komoto T, Fukui F, Takaku H, Machida Y, Arai M, Mitsuoka T, Bifidobacteria Microflora, 7, 61, 1988
  8. Wada K, Watanabe J, Mizutani J, Tomoda M, Suzuki H, Saitoh Y, Nippon Nogeikagaku Kaishi, 66, 127, 1992
  9. Hidaka H, Eida T, Takizawa T, Tokunaga T, Tashiro Y, Bifidobacteria Microflora, 5, 37, 1986
  10. Oku T, Tokunaga T, Hosoya N, J. Nutr., 114, 1574, 1984
  11. Food Chemical (Japanese), Oct., p. 21, 1989
  12. Takaku H, Handbook of Amylase and RElated Enzymes, p. 215-217, The Amylase Research Society of Japan ed. Pergamon Press, Oxford, 1988
  13. Ooshima T, Fujiwara T, Takei T, Izumitani A, Microbiol. Immunol., 32, 1093, 1988
  14. Ooshima T, Fujiwara T, Takei T, Izumitani A, Microbiol. Immunol., 32, 1093, 1988
  15. Kuruki T, Yanase M, Takata H, Takesada Y, Imanaka T, Okada S, Appl. Environ. Microbiol., 59, 593, 1993
  16. Kuriki T, Tsuda M, Imanaka T, J. Ferment. Bioeng., 73, 198, 1992
  17. Yun JW, Lee MG, Song SK, Biotechnol. Lett., 16(4), 359, 1994
  18. Yun Jw, Noh JS, Song JY, Song SK, Korean J. Biotechnol. Bioeng., 77, 159, 1994
  19. Meagher MM, Nikolov ZL, Reilly PJ, Biotechnol. Bioeng., 34, 681, 1989
  20. Nikolov ZL, Meagher MM, Reilly PJ, Biotechnol. Bioeng., 34, 694, 1989
  21. Beschkov V, Marc A, Engasser JM, Biotechnol. Bioeng., 26, 694, 1984
  22. Jung KH, Yun JW, Kang KR, Lim JY, Lee JH, Enzyme Microb. Technol., 11, 491, 1989