Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.60, No.2, 313-319, 2022
게이트 하부 식각 구조 및 HfO 2 절연층이 도입된 AlGaN/GaN 기반 전계 효과 트랜지스터
AlGaN/GaN Field Effect Transistor with Gate Recess Structure and HfO 2 Gate Oxide
HfO2을 게이트 산화막으로 갖는 AlGaN/GaN 기반 고이동도 전계효과 트랜지스터(high electron mobility transistor, HEMT)의 노멀리 오프(normally-off) 작동 구현을 위하여 게이트 리세스(gate-recess) 깊이에 따른 소자 특성이 시뮬레 이션을 통하여 분석되었다. 전통적인 HEMT 구조, 3 nm의 두께를 갖는 게이트 리세스된 HEMT 구조, 게이트 영역에 AlGaN 층을 갖지 않는 HEMT 구조가 모사되었다. 전통적인 HEMT 구조는 노멀리 온(normally-on) 특성을 나타내었 으며, 0 V의 게이트 전압 및 15 V의 드레인 전압 환경에서 0.35 A의 드레인 전류 특성을 나타내었다. 3 nm의 두께를 갖는 게이트 리세스된 HEMT 구조는 2DEG(2-dimensional electron gas) 채널의 전자 농도 감소로 인해, 같은 전압 인 가 조건에서 0.15 A의 드레인 전류 값을 보였다. 게이트 영역에 AlGaN 층을 갖지 않는 HEMT 구조는 뚜렷한 노멀리 오프 동작을 나타내었으며, 0 V의 동작전압 값을 확인할 수 있었다.
AlGaN/GaN based HfO2 MOSHEMT (metal oxide semiconductor high electron transistor) with different gate recess depth was simulate to demonstrate a successful normally-off operation of the transistor. Three types of the HEMT structures including a conventional HEMT, a gate-recessed HEMT with 3 nm thick AlGaN layer, and MIS-HEMT without AlGaN layer in the gate region. The conventional HEMT showed a normally-on characteristics with a drain current of 0.35 A at VG = 0 V and VDS = 15 V. The recessed HEMT with 3 nm AlGaN layer exhibited a decreased drain current of 0.15 A under the same bias condition due to the decrease of electron concentration in 2DEG (2-dimensional electron gas) channel. For the last HEMT structure, distinctive normally- off behavior of the transistor was observed, and the turn-on voltage was shifted to 0 V.
[References]
  1. Weimer PK, Proc. IRE., 50(6), 1462, 1962
  2. Fei X, Wang Y, Luo X, Cao F, Yu C, Superlattices Microstruct., 114, 314, 2018
  3. Choi J, Kim S, Kim H, Korean J. Chem. Eng., 35(6), 1348, 2018
  4. Shekar B, Lee J, Rhee S, Korean J. Chem. Eng., 21(1), 267, 2004
  5. Mishra UK, Parikh P, Wu YF, Proc. IEEE, 90(6), 1022, 2002
  6. Wu YF, Kapolnek D, Ibbetson JP, Parikh P, Keller BP, Mishra UK, IEEE Trans. Electron Devices, 48(3), 586, 2001
  7. Kobayashi T, Abe H, Niimura Y, Yamada T, Kurosaki A, Hosen T, Fujihira T, Proc. ISPSD, 435, 2001
  8. Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T, Ohashi H, IEEE Trans. Electron Devices, 50(12), 2528, 2003
  9. Kaminski N, Hilt O, IET Circuits Devices Syst., 8(3), 227, 2014
  10. Liu S, Yang S, Tang Z, Jiang Q, Liu C, Wang M, Chen KJ, “Performance Enhancment of Normally-Off Al2O3/AlN/ GaN MOS-Channel HEMTs with and ALD-Grown AlN Interfacial Layer,” Proc. of the 26th Int. Symp. Power Semiconductor Devices & IC’s (ISPSD), 362-365(2014).
  11. Chen KJ, Yuan L, Wang MJ, Chen H, Huang S, Zhou Q, Zhou C, Li BK, Wang JN, “Physics of Fluorine Plasma ion Implantation for GaN Normally-off HEMT Technology,” Tech. Dig. Int. Electron Devices Meet., 19.4.1-19.4.4(2011).
  12. Uemeto Y, Hikita M, Ueno H, Matsuo H, Ishida H, Yanagihara M, Ueda T, Tanaka T, Ueda D, IEEE Trans. Electron Devices, 54(12), 3393, 2007
  13. Wang H, Wang J, Li M, Cao Q, Yu M, He Y, Wu W, IEEE Trans. Electron Devices Lett., 39(12), 1888, 2018
  14. Zhao Y, Wang C, Zheng X, Ma X, He Y, Liu K, Li A, Peng Y, Zhang C, Hao Y, Solid-State Electron., 163, 107649, 2020
  15. Zhao Y, Xu S, Tao H, Zhang Y, Zhang C, Feng L, Peng R, Fan X, Du J, Zhang J, Hao Y, Materials, 14(1), 144, 2021