Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.60, No.2, 277-281, 2022
Visualization Study on Microscale Wetting Dynamics of Water Droplets on Dry and Wet Hydrophilic Membranes
The wetting dynamics of water droplets dispensed on the surface of dry and wet hydrophilic membranes were investigated experimentally from a microscale point of view. By using a high-speed, white-beam x-ray microimaging (WXMI) synchrotron, consecutive images displaying the dynamic motions of the droplets were acquired. Through analyzing the characteristics observed, it was found that the dry hydrophilic membrane showed local hydrophobicity at a certain point during the absorption process with apparent contact angles greater than 90. While on the other hand, the apparent contact angles of a water droplet absorbing into the wet membrane remained less than 90 and showed total hydrophilicity. The observations and interpretation of characteristics that affect the contact, wetting, recoiling, and dynamic behaviors of droplets are significant for controlling liquid droplet impingement in a desired manner.
[References]
  1. Wang MJ, Lin FH, Ong JY, Lin SY, Colloids Surf. A: Physicochem. Eng. Asp., 339(1-3), 224, 2009
  2. Rein M, “Phenomena of Liquid Drop Impact on Solid and Liquid Surfaces,” Fluid Dynamic Research, 1993.
  3. Modaressi H, Garnier G, Langmuir, 18(3), 642, 2002
  4. Modak CD, Kumar A, Tripathy A, Sen P, Nat Commun, 11(1), 4327, 2020
  5. Kwon KS, Kim HS, Choi M, Rev. Sci. Instrum., 87(3), 035101, 2016
  6. Krainer S, Smit C, Hirn U, Rsc Adv, 9(54), 31708, 2019
  7. Li Z, Kong Q, Ma X, Zang D, Guan X, Ren X, Nanoscale, 9(24), 8249, 2017
  8. Wijshoff H, Curr. Opin. Colloid Interface Sci., 36, 20, 2018
  9. Gao YS, Jung SW, Pan L, Acs Omega, 4(15), 16674, 2019
  10. Li X, Ma X, Lan Z, AIChE J., 55(8), 1983, 2009
  11. Shen J, Liburdy JA, Pence DV, Narayanan V, J. Phys. Condens. Matter, 21(46), 464133, 2009
  12. Verplanck N, Coffinier Y, Thomy V, Boukherroub R, Nano. Res. Lett., 2(12), 577, 2007
  13. Larher Y, Langmuir, 13(26), 7299, 1997
  14. Tran PA, Webster TJ, Int. J. Nanomed, 8, 2001, 2013
  15. Nakajima A, Nakajima A, NPG Asia Mater. NPG Asia Materials, 3, 49, 2011
  16. Yonemoto Y, Kunugi T, Sci. World J., 2014, 647694, 2014
  17. Banerjee S, “Simple Derivation of Young, Wenzel and Cassie- Baxter Equations and its Interpretations,” arXiv preprint arXiv: 0808.1460 (2008).
  18. Whyman G, Bormashenko E, Stein T, Chem. Phys. Lett., 450(4-6), 355, 2008
  19. Huang XM, Gates I, Sci Rep-Uk, 10(1), 2020
  20. Ferrari M, J. Adhes. Sci. Technol., 28(8-9), 791, 2014
  21. Pandey PR, Roy S, J. Phys. Chem. Lett., 4(21), 3692, 2013
  22. Chen L, Li Z, Phys. Rev. E, 82(1-2), 016308, 2010
  23. Kim S, Choi H, Polycarpou AA, Liang H, Friction, 4(3), 249, 2016
  24. Bae KJ, Yao WH, He YL, Cho YR, Korean J. Met. Mater., 55(9), 624, 2017
  25. Bormashenko E, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 368(1929), 4695, 2010
  26. Li Y, Li J, Liu L, Yan Y, Zhang Q, Zhang N, He L, Liu Y, Zhang X, Tian D, Leng J, Jiang L, Adv. Sci., 7(18), 2000772, 2020
  27. Shetabivash H, Dolatabadi A, AIP Advances, 7(9), 095003, 2017
  28. Quetzeri-Santiago MA, Castrejón-Pita AA, Castrejón-Pita JR, Sci Rep-Uk, 9(1), 15030, 2019
  29. Kannangara D, Zhang H, Shen W, Colloids Surf. A: Physicochem. Eng. Asp., 280(1-3), 203, 2006
  30. Lee K, Ivanova N, Starov V, Hilal N, Dutschk V, Adv. Colloid Interface Sci., 144(1-2), 54, 2008