Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.60, No.2, 260-266, 2022
Application of Scaling Theories to Estimate Particle Aggregation in a Colloidal Suspension
Average aggregate size in particulate suspensions is estimated with scaling theories based on fractal concept and elasticity of colloidal gel. The scaling theories are used to determine structure parameters of the aggregates, i.e., fractal dimension and power-law exponent for aggregate size reduction with shear stress using scaling behavior of elastic modulus and shear yield stress as a function of particle concentration. The structure parameters are utilized to predict aggregate size which varies with shear stress through rheological modeling. Experimentally rheological measurement is conducted for aqueous suspension of zinc oxide particles with average diameter of 110 nm. The predicted aggregate size is about 1135 nm at 1 s-1 and 739 nm at 1000 s-1 on the average over the particle concentrations. It has been found that the predicted aggregate size near 0.1 s-1 agrees with that the measured one by a dynamic light scattering analyzer operated un-sheared.
[References]
  1. Buscall R, Mills PD, Goodwin JW, Lawson D, J. Chem. Soc.-Faraday Trans., 84(12), 4248, 1988
  2. Shih WH, Shih WY, Kim SI, Liu J, Aksay IA, Phys. Rev., A, 42(8), 4772, 1990
  3. Potanin AA, De Rooij R, van den Ende D, Mellema J, J. Chem. Phys., 102(14), 5845, 1995
  4. Quemada D, Eur. Phys. J., Appl. Phys, 1(1), 119, 1998
  5. Wu H, Morbidelli M, Langmuir, 17(4), 1030, 2001
  6. Eggersdorfer MI, Kadau D, Herrmann HJ, Pratsinis SE, J. Colloid Interface Sci., 342(2), 261, 2010
  7. Mewis J, Wagner NJ, Colloidal Suspension Rheology, Cambridge press, Cambridge(2012).
  8. Urena-Benavides EE, Kayatin MJ, Davis VA, Macromolecules, 46(4), 1942, 2013
  9. Lee B, Koo S, Powder Technol., 266, 16, 2014
  10. Kawaguchi M, Adv. Colloid Interface Sci., 284, 1022, 2020
  11. Meakin P, Adv. Colloid Interface Sci., 28, 249, 1987
  12. Lin M, Lindsay H, Weitz D, Ball R, Klein R, Meakin P, Nature, 339(6223), 360, 1989
  13. Sonntag RC, Russel WB, J. Colloid Interface Sci., 113(2), 399, 1986
  14. Potanin AA, J. Colloid Interface Sci., 157(2), 399, 1998
  15. Kim D, Koo S, Korea-Aust. Rheol. J., 32(4), 301, 2020
  16. Haynes WM (Ed.), CRC Handbook of Chemistry and Physics, CRC Press, 4.100(2011).
  17. Ikeda S, Foegeding EA, Hagiwara T, Langmuir, 15(25), 8584, 1999
  18. Casson N, in Mill CC(Ed.), Flocculated particles, Pergamon Press, New York, 84-104(1959).
  19. Herschel WH, Bulkley R, Kolloid-Zeitschrift, 39, 291, 1926
  20. Jullien R, Botet R, Aggregation and Fractal Aggregates, World Scientific, Singapore(1987).
  21. Patel PD, Russel WB, Colloids Surf., 31, 355, 1988
  22. Potanin AA, J. Chem. Phys., 96(12), 9191, 1992
  23. Quemada D, Rheol. Acta, 16(1), 82, 1977
  24. Russel WB, Sperry PR, Prog. Org. Coat., 23(4), 305, 1994
  25. Chen ZY, Meakin P, Deutch JM, Phys. Rev. Lett., 59(18), 2121, 1987