Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.6, 861-867, 2019
기공구조로 제조된 Li4Ti5O12 음극활물질의 전기화학적 특성
Synthesis and Electrochemical Properties of Porous Li4Ti5O12 Anode Materials
차세대 리튬이차전지용 음극활물질로 각광을 받고있는 Li4Ti5O12는 높은 수명특성, 낮은 비가역용량 그리고 충방전시 부피팽창이 거의 없는 물질이다. 하지만 낮은 전기전도도로 인하여 높은 전류밀도에서는 용량특성이 현저하게 낮아지는 단점을 가지고 있다. 이 문제점을 해결하기 위해 P123을 첨가한 졸-겔법으로 기공구조의 Li4Ti5O12를 합성하였다. 제조된 샘플들의 물리적 특성을 분석하기 위해 XRD, SEM, BET를 사용하였고, 전기화학적 특성은 사이클테스트, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS)로 분석을 하였다. P123/Ti = 0.01mol의 비율로 만들어진 Li4Ti5O12에서 가장 균일한 입자사이즈, 높은 비표면적, 그리고 상대적으로 높은 기공의 분포를 보였다. EIS분석 결과 기공구조의 Li4Ti5O12의 경우 저항을 나타내는 반원의 크기가 현저하게 감소하였으며, 전극 내 저항값이 줄어들었음을 알 수 있었다. 율속 테스트결과 0.2C에서 178 mAh/g, 0.5C에서 170 mAh/g, 5C에서 110 mAh/g 그리고 10C에서 90 mAh/g의 용량을 유지하였고 용량회복율 또한 99%로 매우 우수하였다.
Li4Ti5O12 is a promising next-generation anode material for lithium-ion batteries due to excellent cycle life, low irreversible capacity, and little volume expansion during charge-discharge process. However, it has poor charge capacity at high current density due to its low electrical conductivity. To improve this weakness, porous Li4Ti5O12 was synthesized by sol-gel method with P123 as chelating agent. The physical characteristics of as-prepared sample was investigated by XRD, SEM, and BET analysis, and electrochemical properties were characterized by cycle performance test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS). Li4Ti5O12 synthesized by 0.01mol ratio of P123/Ti showed most unified particle size, high specific surface area, and relatively high porosity. EIS analysis showed that depressed semicircle size was remarkably reduced, which suggested resistance value in electrode was decreased. Capacity in rate performance showed 178 mAh/g at 0.2C, 170 mAh/g at 0.5C, 110 mA/h at 5C, and 90 mAh/g at 10C. Capacity retention also showed 99% after rate performance.
[References]
  1. Ji L, Lin Z, Alcoutlabi M, Zhang X, Energ. Environ. Sci., 4(8), 2682, 2011
  2. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D, Energ. Environ. Sci., 4(9), 3243, 2011
  3. Park CM, Kim JH, Kim HS, Sohn HJ, Chem. Soc. Rev., 39(8), 3115, 2010
  4. Zhu GN, Wang YG, Xia YY, Energ. Environ. Sci., 5(5), 6652, 2012
  5. Shi Y, Wen L, Li F, Cheng HM, J. Power Sources, 196(20), 8610, 2011
  6. Kim JW, Lee KE, Kim KH, Wi SG, Lee SH, Nam SH, Kim CJ, Kim SO, Park BW, Carbon, 114, 275, 2018
  7. Zou H, Liang X, Feng X, Xiang H, ACS Appl. Mater. Inter., 8(33), 21407, 2016
  8. Zhang P, Huang YD, Jia W, Cai YJ, Wang XC, Guo Y, Jia DZ, Sun ZP, Guo ZP, Electrochim. Acta, 210, 935, 2016
  9. Katelen H, Tuncer M, Tu S, Repp S, Gocmez H, Thomann R, Weber S, Erdem E, J. Mater. Chem. A, 1(34), 9973, 2013
  10. Hou L, Qin X, Gao X, Guo T, Li X, Li J, J. Alloy. Compd., 774, 38, 2019
  11. Wang W, Wang HL, Wang SB, Hu YJ, Tian QX, Jiao SQ, J. Power Sources, 228, 244, 2013
  12. Jiang C, Ichihara M, Honma I, Zhou HS, Electrochim. Acta, 52(23), 6470, 2007
  13. Kim DH, Ahn YS, Kim J, Electrochem. Commun., 7, 1340, 2005
  14. Chen JZ, Yang L, Fang SH, Hirano S, Tachibana K, J. Power Sources, 200, 59, 2012
  15. Marien CBD, Marchal C, Koch A, Robert D, Drogui P, Environ. Sci. Pollut. Res., 24(14), 12582, 2017
  16. Baek GY, Jeong SM, Na BK, Clean Technol., 22(4), 308, 2016
  17. Othman Z, “A Review : Fundamental Aspects of Silicate Mesoporous Materials, Materials,” 5(12), 2874-2902(2012).
  18. Zhao S, Sheng X, Zhou Y, He M, Fu X, Zhang Y, J. Porous Mat., 22(6), 1407, 2015
  19. Shen L, Zhang X, Uchaker E, Yuan C, Cao G, Adv. Eng. Mater., 2, 691, 2012
  20. Nithya VD, Sharmila S, Vediappan K, Lee CW, Vasylechko L, Selvan RK, J. Appl. Electrochem., 44(5), 647, 2014
  21. Tang YF, Yang L, Qiu Z, Huang JS, Electrochem. Commun., 10(10), 1513, 2008
  22. Zhang CM, Zhang YY, Wang J, Wang D, He DN, Xia YY, J. Power Sources, 236, 118, 2013
  23. Cohn G, Eichel RA, Eli TE, Phys. Chem. Chem. Phys., 15(9), 3256, 2013
  24. He YB, Liu M, Huang ZD, Zhang B, Yu Y, Li BH, Kang FY, Kim JK, J. Power Sources, 239, 269, 2013
  25. Lu G, Liu J, Huang W, Wang X, Wang F, Appl. Organomet. Chem., 33(7), e4957, 2019
  26. Reddy MV, Madhavi S, Rao GVS, Chowdari BVR, J. Power Sources, 162(2), 1312, 2006
  27. Sun L, Wang JP, Jiang KL, Fan SS, J. Power Sources, 248, 265, 2014
  28. Zhang Z, Cao L, Huang J, Wang D, Wu J, Cai Y, Ceram. Int., 39, 2695, 2013