Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.6, 847-852, 2019
수계 유기 레독스 흐름 전지 성능에서의 첨가제 효과
The Effect of Additives on the Performance of Aqueous Organic Redox Flow Battery Using Quinoxaline and Ferrocyanide Redox Couple
본 연구에서는 퀴노잘린(quinoxaline)과 페로시아나이드(ferrocyanide)를 활물질로 활용한 알칼리 전해질 기반 수계유기 레독스 흐름전지에 대해 다양한 첨가제를 적용하여 성능을 비교하는 실험을 진행하였다. 퀴노잘린(quinoxaline)의 경우 염화칼륨(KCl) 전해질보다는 수산화칼륨(KOH) 전해질에서의 레독스 전위(-0.97 V)가 더 작은 위치에 있으며, 이에따라 KOH 전해질에 대해 페로시아나이드와 조합을 이루었을 때, 셀 전압 값은 1.3 V로 높게 나타났다. 상용 양이온 교환막 중 하나인 Nafion 117 멤브레인을 사용하였을 때, 퀴노잘린(quinoxaline)의 부반응 현상을 반전지 상에서 관찰 할 수 있었으며, 이에 따라 충방전 자체가 잘 되지 않는 문제점이 있다. 따라서, 문제점이 되는 퀴노잘린(quinoxaline)의 부반응을 해결하기 위해 친전자체와 친핵체 중 하나인 포타슘설페이트(K2SO4)와 포타슘아이오다이드(KI)를 사용하였으며, 포타슘아이오다이드(KI)를 사용하였을 때, 용량 손실율 측면에서 포타슘 아이오다이드(KI)를 첨가제로 넣지 않았을 때(0.29 Ah·L-1 per cycle) 보다 더 낮은 용량 손실율(0.21 Ah·L-1 per cycle)로 더 높은 용량 유지율을 보였다.
In this study, the effect of additives on the performance of aqueous organic redox flow battery (AORFB) using quinoxaline and ferrocyanide as active materials in alkaline supporting electrolyte is investigated. Quinoxaline shows the lowest redox potential (-0.97 V) in KOH supporting electrolyte, while when quinoxaline and ferrocyanide are used as the target active materials, the cell voltage of this redox combination is 1.3 V. When the single cell tests of AORFBs using 0.1 M active materials in 1 M KCl supporting electrolyte and Nafion 117 membrane are implemented, it does not work properly because of the side reaction of quinoxaline. To reduce or prevent the side reaction of quinoxaline, the two types of additives are considered. They are the potassium sulfate as electrophile additive and potassium iodide as nucleophilie additive. Of them, when the single cell tests of AORFBs using potassium iodide as additive dissolved in quinoxaline solution are performed, the capacity loss rate is reduced to 0.21 Ah·L-1 per cycle and it is better than that of the single cell test of AORFB operated without additive (0.29 Ah·L-1 per cycle).
[References]
  1. Ryu JH, Korean J. Chem. Eng., 35(2), 328, 2018
  2. Shabanian SR, Edrisi S, Khoram FV, Korean J. Chem. Eng., 34(8), 2188, 2017
  3. Lim JE, Kim JK, Korean Chem. Eng., 35, 2464, 2018
  4. Lim WG, Jo CS, Lee JW, Hwang DS, Korean J. Chem. Eng., 35(2), 579, 2018
  5. Lee JH, Moon JH, Korean J. Chem. Eng., 34(12), 3195, 2017
  6. Jung M, Lee W, Noh C, Konovalova A, Yi GS, Kim S, Kwon Y, Henkensmeier D, J. Membr. Sci., 580, 110, 2019
  7. Jung HY, Cho MS, Sadhasivam T, Kim JY, Roh SH, Kwon Y, Solid State Ion., 324, 69, 2018
  8. Struzynska-Piron I, Jung M, Maljusch A, Conradi O, Kim S, Jang JH, Kim H, Kwon Y, Nam SW, Henkensmeier D, Eur. Polym. J., 96, 383, 2017
  9. Jung HY, Jeong S, Kwon Y, J. Electrochem. Soc., 163(1), A5090, 2016
  10. Jung M, Lee W, Krishnan NN, Kim S, Gupta G, Komsiyska L, Harms C, Kwon Y, Henkensmeier D, Appl. Surf. Sci., 450, 301, 2018
  11. Noh C, Jung M, Henkensmeier D, Nam SW, Kwon Y, ACS Appl. Mater. Interfaces, 9, 36799, 2017
  12. Jeong S, Kim LH, Kwon Y, Kim S, Korean Chem. Eng., 31, 2081, 2014
  13. Dai Y, Zhu X, Korean J. Chem. Eng., 35(7), 1570, 2018
  14. Kim SY, Kim H, Korean J. Chem. Eng. Res., 57, 408, 2019
  15. Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187, 2018
  16. Noh C, Lee CS, Chi WS, Chung Y, Kim JH, Kwon Y, J. Electrochem. Soc., 165(7), A1388, 2018
  17. Lee WM, Kwon YJ, Korean Chem. Eng. Res., 56(6), 890, 2018
  18. Lee WM, Chung KY, Kwon YC, Korean Chem. Eng. Res., 57(2), 239, 2019
  19. Yang B, Hoober-Burkhardt L, Wang F, Prakash GKS, Narayanan SR, J. Electrochem. Soc., 161(9), A1371, 2014
  20. Lee W, Kwon BW, Kwon Y, ACS Appl. Mater. Interfaces, 10, 36882, 2018
  21. Janoschka T, Martin N, Hager MD, Schubert US, Angew. Chem.-Int. Edit., 55, 14427, 2016
  22. Chang ZJ, Henkensmeier D, Chen RY, J. Power Sources, 418, 11, 2019
  23. Chen Q, Gerhardt MR, Hartle L, Aziz MJ, J. Electrochem. Soc., 163(1), A5010, 2016
  24. Lin K, Gomez-Bombarelli R, Beh ES, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz MJ, Gordon RG, Nat. Energy, 1, 16102, 2016
  25. Agmon N, Chem. Phys. Lett., 319(3-4), 247, 2000
  26. Milshtein JD, Su L, Liou C, Badel AF, Brushett FR, Electrochim. Acta, 180, 695, 2015
  27. Luo J, Sam A, Hu B, DeBruler C, Wei X, Wang W, Liu TL, Nano Energy, 42, 215, 2017
  28. Badr MZA, El-Naggar GM, El-Sherief HAH, Abdel-Rahman AES, Aly MF, Bull. Chem. Soc. Jpn., 56, 326, 1983
  29. Aleksic MM, Pantic J, Kapetanovic VP, Facta Univer. Ser. Phys. Chem. Technol., 12, 55, 2014
  30. Nagarajan R, Perumal PT, Chem. Lett., 33(3), 288, 2004
  31. Mabbott GA, J. Chem. Educ., 60, 697, 1983
  32. Randles JEB, Somerton KW, Trans. Faraday Soc., 48, 937, 1952
  33. Dey A, Karan S, De SK, Solid State Commun., 149, 1282, 2009
  34. Altshuller AP, Schwab CM, Bare M, Anal Chem, 31, 1987, 1959
  35. Chakrabarti MH, Dryfe RAW, Roberts EPL, Electrochim. Acta, 52(5), 2189, 2007