Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.6, 832-840, 2019
붕소가 도핑된 리튬이온전지용 양극 활물질(LiNi0.90Co0.05Ti0.05O2)의 전기화학적 특성
Electrochemical Properties of Boron-doped Cathode Materials (LiNi0.90Co0.05Ti0.05O2) for Lithium-ion Batteries
양극 활물질의 전기화학적 성능을 개선하기 위하여, 농도 구배형 전구체를 사용한 boron-doped LiNi0.90Co0.05Ti0.05O2를 합성하였다. 제조된 양극 활물질의 특성은 XRD, SEM, EDS, PSA, ICP-OES 및 전기전도도 측정을 통하여 분석하였다. 초기 충·방전 용량, 사이클, 순환전압전류, 율속 특성 및 임피던스 테스트를 통해 전기화학적 성능을 조사하였다. 붕소가 0.5 mol% 도핑된 LiNi0.90Co0.05Ti0.05O2 양극 활물질은 2.7~4.3 V (vs. Li/Li+)의 전압 범위에서 0.5 C의 전류를 인가했을 때, 187 mAh/g의 용량을 보이며 50 사이클 이후 94.7%의 용량 유지율을 보였다. 상대적으로 고전압인 2.7~4.5 V(vs. Li/Li+)의 전압 범위에서는 200 mAh/g의 높은 용량을 보이며 50 사이클 이후 80.5%의 용량 유지율을 나타냈다.
To improve the electrochemical performances of the cathode materials, boron-doped LiNi0.90Co0.05Ti0.05O2 were synthesized by using concentration gradient precursor. The characteristics of the prepared cathode materials were analyzed by XRD, SEM, EDS, PSA, ICP-OES and electrical conductivity measurement. The electrochemical performances were investigated by initial charge/discharge capacity, cycle stability, C-rate, cyclic voltammetry and electrochemical impedance spectroscopy. The cathode material with 0.5 mol% boron exhibited a capacity of 187 mAh/g (0.5 C) in a voltage range of 2.7~4.3 V(vs. Li/Li+), and an capacity retention of 94.7% after 50 cycles. In the relatively high voltage range of 2.7~4.5 V(vs. Li/Li+), it showed a high capacity of 200 mAh/g and capacity retention of 80.5% after 50 cycles.
[References]
  1. Lain MJ, J. Power Sources, 97-98, 736, 2001
  2. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D, Energy Environ. Sci., 4, 3243, 2011
  3. Lu Z, MacNeil DD, Dahn JR, Electrochem. Solid State Lett., 4, A191, 2001
  4. Fergus JW, J. Power Sources, 195(4), 939, 2010
  5. Liu W, Oh P, Liu X, Lee M, Cho W, Chae S, Kim Y, Cho J, Angew. Chem.-Int. Edit., 54, 4440, 2015
  6. Mohanty D, Dahlberg KD, King M, David LA, Sefat AS, Wood DL, Daniel C, Dhar S, Mahajan V, Lee M, Albano F, Scientific Reports, 6, 26532, 2016
  7. Liu L, Sun K, Zhang N, Yang T, J. Solid State Ionics, 180, 198, 2009
  8. Ko HS, Kim JH, Wang J, Lee JD, J. Power Sources, 372, 107, 2017
  9. Park K, Jung H, Kuo L, Kaghazchi P, Yoon CS, Sun Y, Adv. Eng. Mater., 8, 180120, 2018
  10. Dou J, Kang X, Wumaier T, Yu H, Hua N, Han Y, Xu G, J. Solid State Electrochem., 16, 1481, 2012
  11. Liu J, Wang S, Ding Z, Zhou R, Xia Q, Zhang J, Chen L, Wei W, Wang P, ACS Appl. Mater. Interfaces, 8, 18008, 2016
  12. Kim J, Lee H, Cha H, Yoon M, Park M, Cho J, Adv. Eng. Mater., 8, 170202, 2018
  13. Ko HS, Park HW, Kim GJ, Lee JD, Korean J. Chem. Eng., 36(4), 620, 2019
  14. Ju SH, Jang HC, Kang YC, Electrochim. Acta, 52(25), 7286, 2007
  15. Liu S, Xiong L, He C, J. Power Sources, 261, 285, 2014
  16. Sun HH, Choi W, Lee JK, Oh IH, Jung HG, J. Power Sources, 275, 877, 2015
  17. Ko HS, Park HW, Lee JD, Korean Chem. Eng. Res., 56(5), 718, 2018
  18. Yu QP, Chen ZT, Xing LD, Chen DR, Rong HB, Liu QF, Li WS, Electrochim. Acta, 176, 919, 2015
  19. Kang SH, Kim J, Stoll ME, Abraham D, Sun YK, Amine K, J. Power Sources, 112(1), 41, 2002
  20. Julien C, Nazri GA, Rougier A, Solid State Ionics, 135, 121, 2000
  21. Park DY, Park DY, Lan Y, Lim YS, Kim MS, J. Ind. Eng. Chem., 15(4), 588, 2009