Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.6, 812-825, 2019
강산성 양이온 교환수지를 통한 백운석으로부터 CaCO3 및 MgO/Mg(OH)2 합성에 관한 연구
A Study on Synthesis of CaCO3 & MgO/Mg(OH)2 from Dolomite Using the Strong Acidic Cation Exchange Resin
국내에서 채광되는 백운석(dolomite, CaMg(CO3)2)을 회분식 형태의 마이크로웨이브 소성로(950 °C/60 min)에 의해 소성하여 경소백운석(CaO·MgO)을 제조하였다. 국내에서 산출된 두 개의 백운석 시료를 대상으로 경소백운석 (CaO·MgO) 제조 후 수화 특성을 규명한 결과 반응성이 다름을 규명하였다. 경소백운석(CaO·MgO)의 수화 특성의 반응성을 이용하여 강산성 양이온 교환수지와 반응 시켜서 MgO를 분리하는 조건을 실시하였다. 분리 실험 조건은 경소 백운석(CaO·MgO)과 R-SO3H (1:12 mass %)로 칼슘이온 흡착(Ca-(R-SO3)2)하여 MgO를 분리하였다. 분리 후 MgO의 함량은 94 mass % 이상으로 분리되었다. 분리된 MgO를 950 °C, 60 min 동안 열처리 후 MgO의 순도는 96 mass %로 나타났다. 그리고 칼슘 이온이 흡착된 강산성 양이온 교환수지(Ca-(R-SO3)2)와 NaOH, CO2 gas 반응에 의해서 98 mass %의 CaCO3를 합성하였다.
Two dolomite samples mined from the different mines were calcined using a batch-type microwave kiln (950 oC/60 min) to produce CaO·MgO. The hydration of the CaO·MgO samples shows different reactivity. MgO was separated by reacting with a strong acid cation exchange resin using the reactivity of the hydration properties of light dolomite (CaO·MgO). Calcium (Ca-(R-SO3)2) was separated from the prepared CaO·MgO by the cation exchange resin (CaO·MgO : R-SO3H = 1:12 mass %). High purity MgO (higher than 94 mass %) with unburned CaCO3 (1~2 mass %) was obtained by the separation process. The separated MgO was heated at 950℃ for 60 minutes to afford high purity MgO with MgO content higher than 96%. And High-grade CaCO3 was prepared from the reaction with calcium adsorbed resin (Ca-(R-SO3)2) and NaOH, CO2 gas.
[References]
  1. Hwang DJ, Ryu JY, Park JH, Yu YH, Lee SK, Cho KH, Han C, Lee JD, J. Ind. Eng. Chem., 18(6), 1956, 2012
  2. Hwang DJ, Ryu JY, Park JH, Yu YH, Choi MK, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 19(5), 1507, 2013
  3. Hwang DJ, Ryu JY, Yu YH, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 20(5), 2727, 2014
  4. Hwang DJ, Cho KH, Choi MK, Yu YH, Lee SK, Ahn JW, Lim GI, Han C, Lee JD, Korean J. Chem. Eng., 28(9), 1927, 2011
  5. Bes AM, Ottovon- Guericke University Magdeburg, Germany, 2006 (Dr. -Ing. Thesis).
  6. Chatterjee A, Basak T, Ayappa KG, J. AIChE, 44(10), 2302, 1998
  7. Kenkre VM, Skala L, Weiser MW, J. Mater. Sci., 26, 2483, 1991
  8. Clemens J, Saltiel C, International J. Heat and Mass Transfer, 39(8), 1665-1675(1996).
  9. Clemens J, Saltiel C, Int. J. Heat Mass Transf., 39(8), 1665, 1996
  10. Brosnan KH, Messing GL, Agrawal DK, J. Am. Ceram. Soc., 86(8), 1307, 2003
  11. Zhao C, Vleugels J, Acta Mater., 48, 3795, 2000
  12. Das S, Mukhopadhyay AK, Bull. Mater. Sci., 32(1), 1, 2009
  13. Metaxas AC, Power Eng. J., 5(5), 237, 1991
  14. Panda SS, Singh V, Upadhyaya A, Scripta Materialia., 54, 2179, 2006
  15. Dai CH, Zhang XP, Zhang JS, Yang YJ, Cao LH, Fei X, J. Mater. Sci., 32(9), 2469, 1997
  16. Garcia-Carmona J, Gomez-Morales J, Fraile-Sainz J, Rodriguez-Clemente R, Powder Technol., 130(1-3), 307, 2003
  17. Shin BC, Department of Chemical Engineering Graduate School, Kangwon National University, Korea(2001).
  18. http://www.samyangcorp.com/CO43/Details/28?searchCate=1.
  19. Mochida Y, Miyazawa K, Tazawa M, J. Soc. Inor. Mater. Japan, 36, 20, 1958
  20. Kasai J, J. Soc. Inor. Mater. Japan, 63, 75, 1968
  21. Nishikawa Y, J. Soc. Inor. Mater. Japan, 92, 7, 1968
  22. Nishino T, J. Soc. Inor. Mater. Japan, 248, 3, 1994
  23. Jackson LC, Levings SP, Maniocha L, Mintmirer CA, In: Kroschwits, J. I. & Howe-Grant, M., eds., Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., Vol. 15, New York, John Wily & Sons, Inc., 675-722(1995).
  24. Lacson JG, Cometta S, Yoneyama M, In: Chemical Economics Handbook. Menlo Park, CA, SRI International, 93-101(2000).
  25. Hwang DJ, Yu YH, Baek CS, Lee GM, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 30, 309, 2015