Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.6, 768-773, 2019
Fenton 반응과 OCV Holding에 의한 PEMFC 고분자 전해질 막의 열화비교
Comparison of Membrane Degradation of PEMFC by Fenton Reaction and OCV Holding
고분자전해질연료전지(PEMFC)의 고분자막의 전기화학적 내구성을 평가하는 펜톤(Fenton)반응과 개회로전위 유지 (OCV Holding)방법에 의한 고분자 막의 열화 결과를 비교하였다. 펜톤 반응은 셀 밖에서 OCV Holding 방법보다 더 짧은 시간에 고분자막의 화학적인 내구를 평가할 수 있는 방법이다. 펜톤 반응은 과산화수소 30%, 철이온 80 ppm, 80 °C에서 24시간 실시하였다. OCV Holding은 90 °C, 상대습도 30%, OCV에서 168시간 시간 구동하였다. 펜톤 반응에 의해서는 고분자막의 내부에서 열화가 많이 발생하는 현상을 보였다. 반면에 OCV Holding에서는 표면과 내부 전체적인 열화에 의해 막 두께가 얇아졌다. 펜톤 반응에 의해 불소유출속도는 OCV Holding에 비해 10배 이상 높았다. 수소투과속도는 펜톤 반응 24시간에 약 30%증가하였다. OCV Holding에서는 24시간에 수소투과도가 감소하였고 이후 증가하는 경향을 보였다. 전체적으로 펜톤 반응과 OCV Holding에 의한 고분자막 열화는 차이가 있었다. Abstrac
The Fenton reaction, which evaluates the electrochemical durability of polymer membranes of polymer electrolyte fuel cells (PEMFC), and the degradation of polymer membranes by OCV holding method are compared. The Fenton reaction is a method that can evaluate the chemical durability of the polymer membrane at outside the cell in a shorter time than the OCV Holding method. The Fenton reaction was carried out at 30% hydrogen peroxide, 10 ppm iron, and 80 °C for 24 hours. OCV Holding was driven at 90 °C, 30% relative humidity and OCV for 168 hours. The Fenton reaction caused a lot of degradation inside the polymer membrane. On the other hand, in OCV Holding, the membrane thickness was thinned by the entire surface and internal degradation. The fluorine emission rate was more than 10 times higher than that of OCV Holding due to the Fenton reaction. The hydrogen permeation rate increased about 30% at 24 hours of Fenton reaction. At OCV Holding, hydrogen permeability decreased after 24 hours and then increased. As a whole, there was a difference in a membranes deteriorated by Fenton reaction and OCV Holding.
[References]
  1. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, , Chem. Rev., 107(10), 3904, 2007
  2. Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191, 2005
  3. U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
  4. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872, 1993
  5. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127, 2004
  6. Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy, 31, 1838, 2006
  7. Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543, 2003
  8. Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104, 2005
  9. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41, 2004
  10. Wilkinson DP, St-Pierre J, Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  11. Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838, 2006
  12. Wang F, Tang HL, Pan M, Li DX, Int. J. Hydrog. Energy, 33(9), 2283, 2008
  13. Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z, J. Power Sources, 158(2), 1222, 2006
  14. Kim T, Lee J, Cho G, Park K, Korean Chem. Eng. Res., 44(6), 597, 2006
  15. Pearman BP, Mohajeri N, Slattery DK, Hampton MD, Seal S, Cullen DA, Polym. Degrad. Stabil., 98, 1766, 2013
  16. Hao JK, Jiang YY, Gao XQ, Xie F, Shao ZG, Yi BL, J. Membr. Sci., 522, 23, 2017
  17. Zhu Y, Pei SP, Tang JK, Li H, Wang L, Yuan WZ, Zhang YM, J. Membr. Sci., 432, 66, 2013
  18. Chang Z, Yan H, Tian J, Pan H, Pu H, Polym. Degrad. Stabil., 138, 98, 2017
  19. Gummalla M, Atrazhev VV, Condit D, Cipollini N, Madden T, Kuzminyh NY, Weiss D, Burlatsky SF, J. Electrochem. Soc., 157(11), B1542, 2010
  20. Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487, 2011
  21. Hwang BC, Oh SH, Lee MS, Lee DH, Park KP, Korean J. Chem. Eng., 35(11), 2290, 2018
  22. Liang ZX, Chen WM, Liu JG, Wang SL, Zhou ZH, Li WZ, Sun GQ, Xin Q, J. Membr. Sci., 233(1-2), 39, 2004
  23. Wong KH, Kjeang E, J. Electrochem. Soc., 161(9), F823, 2014