Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.6, 763-767, 2019
유량 변화에 따른 exo-tetrahydrodicyclopentadiene의 열분해특성에 관한 연구
A Study on Thermal Decomposition Characteristics of exo-tetrahydrodicyclopentadiene with Variation of Flow Rate
본 연구에서는 흐름형 반응기를 활용하여 단일 화합물로 구성된 연료인exo-tetrahydrodicyclopentadiene (exo-THDCP) 의 유량을 변화시킴에 따라 나타나는 열분해 특성에 대해 분석하였다. 실험은 500 °C, 50 bar의 온도와 압력 조건에서 수행하였으며, 각 유량 조건에서 반응을 통해 생성된 물질은 GC/MS를 사용하여 분석하였다. 그 결과, exo-THDCP는 열에 의해 주로 고리형 화합물로 분해됨과 동시에 일부는 이성질화 되는 것을 확인하였다. 또한, 유량이 증가할수록 분해 및 이성질화 반응을 통해 생성되는 화합물의 종류와 비율이 감소하였으며, 이에 따라 연료의 전환율과 분해 반응시에 발생하는 흡열량도 함께 감소하였다. 열분해 반응 시에 비교적 빠르게 생성되는 화합물은 주로 1- cyclopentylcyclopentene (1-CPCP)의 radical 형태를 중간체로 하여 형성되는 것으로 분석되었는데, 이는 exo-THDCP 로부터 생성될 수 있는 중간체 중에서도 특히 1-CPCP가 생성되는 데에 필요한 활성화 에너지가 약 42 kcal/mol로 가장 낮기 때문인 것으로 해석된다.
In this study, thermal decomposition characteristics of exo-tetrahydrodicyclopentadiene (exo-THDCP) composed with a single compound were analyzed by using a flow reactor. The experiments were carried out at 500 °C, 50 bar and the products of each flow rate condition were analyzed by using a GC/MS. As a result, it was confirmed that exo-THDCP was decomposed mainly into cyclic compounds and a part was isomerized by heat. As the flow rate was increased, the kinds and ratio of compounds produced through the decomposition and isomerization were decreased. Also, the conversion rate of exo-THDCP and the amount of heat absorbed during the decomposition were also decreased. The compounds rapidly produced by decomposition were mainly formed through the radical form of 1-cyclopentylcyclopentene (1-CPCP) which is one of the intermediates that can be formed from exo-THDCP because it has the lowest activation energy of 42 kcal/mol.
[References]
  1. Ning W, Yu P, Jin Z, J. Aerospace Engineering, 227(11), 1780, 2012
  2. Yao Y, Zhang JZ, Wang LP, Int. J. Therm. Sci., 65, 267, 2013
  3. Foreest AV, Giilhan A, Esser B, Sippel M, Ambrosius BAC, Sudmeijer K, J. Thermophys. Heat Transf., 23(4), 693, 2009
  4. Gascoin N, Abraham G, Gillard P, 46th AIAA Joint Propulsion Conference & Exhibit, Nashville(2010).
  5. Granata S, Faravelli T, Ranzi E, Combust. Flame, 132(3), 533, 2003
  6. Zeppieri S, Brezinsky K, Glassman I, Combust. Flame, 108(3), 266, 1997
  7. Banerjee S, Tangko R, Sheen DA, Wang H, Bowman CT, Combust. Flame, 163, 12, 2016
  8. Park SH, Kwon CH, Kim J, Chun BH, Kang JW, Han JS, Jeong BH, Kim SH, Ind. Eng. Chem. Res., 49(18), 8319, 2010
  9. Xing Y, Fang WJ, Xie WJ, Guo YS, Lin RS, Ind. Eng. Chem. Res., 47(24), 10034, 2008
  10. Gao CW, Vandeputte AG, Yee NW, Green WH, Bonomi RE, Magoon GR, Wong HW, Oluwole OO, Lewis DK, Vandewiele NM, Van Geem KM, Combust. Flame, 162(8), 3115, 2015
  11. Herbinet O, Sirjean B, Bounaceur R, Fournet R, Battin-Leclerc F, Scacchi G, Marquaire PM, J. Phys. Chem. A, 110(39), 11298, 2006
  12. Rao PN, Kunzru D, J. Anal. Appl. Pyrolysis, 76, 154, 2006
  13. Streitwieser A, Taft RW, Progress in Physical Organic Chemistry, 7th ed., John Wiley & Sons, New York, 163-167(1970).
  14. Park SH, Kwon CH, Kim J, Chun BH, Kang JW, Han JS, Jeong BH, Kim SH, Ind. Eng. Chem. Res., 49(18), 8319, 2010
  15. http://sciencing.com/how-to-calculate-enthalpy-change-13710444.html.
  16. Chan SH, Ho HK, Tian Y, J. Power Sources, 109(1), 111, 2002