Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.1, 65-72, 2019
Poly (phenylene oxide, PPO) 고분자 전해질을 이용한 불균질 바이폴라막 제조 및 물분해 특성
Preparation of Heterogeneous Bipolar Membranes Using Poly (phenylene oxide, PPO) Polyelectrolyte and Their Water Splitting Properties
본 연구에서는 PPO 이온선택성 용액과 이온교환수지의 혼합비율을 달리하여 캐스팅법으로 불균질 이온교환막을 제조하였고 이를 이용하여 불균질 바이폴라막을 제조하였다. 불균질 양이온교환막 및 음이온교환막의 함수율은 각각 60~80% 이었고 이온교환용량은 2.81~3.26 meq/g, 2.31~2.74 meq/g 이었으며 전기저항은 1.65~1.45Ω·cm2, 1.55~1.05 Ω·cm2 이었다. 또한 불균질 이온교환막의 최대 수지함량은 60 wt% 이었다. 불균질 바이폴라막의 인장강도는 관능화 전 PPO 수지의 인장강도(700 Kgf/cm2) 보다 모두 낮았고, 촉매층이 형성된 불균질 바이폴라막의 인장강도는 무촉매 불균질 바이폴라막보다 인장강도가 낮았다. 또한 촉매층이 형성된 불균질 바이폴라막의 물분해 전압은 최소 1.7~1.8 V, 최대 3.9~4.0 V로 낮고 매우 안정적이었고, 무촉매 불균질 바이폴라막의 물분해 전압은 3.8~4.0 V로 일정하였다.
In this study, heterogeneous ion exchange membranes were prepared by casting method with various mixing ratios of PPO ion-selective solution and ion exchange resin. Then heterogeneous bipolar membranes were prepared by using this. The water content of heterogeneous cation and anion exchange membranes were 60~80% respectively, the ion exchange capacity was 2.81~3.26 meq/g, 2.31~2.74 meq/g and electrical resistances were 1.65~1.45 Ω·cm2 and 1.55 ~1.05 Ω·cm2. The tensile strength of heterogeneous bipolar membrane was lower than that of PPO resin before functionalization (700 Kgf/cm2). The tensile strength of heterogeneous bipolar membrane with catalyst layer was lower than that of non-catalytic heterogeneous bipolar membrane. The water splitting voltage of the heterogeneous bipolar membrane with catalyst layer was low and stable at a minimum of 1.7~1.8 V, maximum 3.9~4.0 V, and the water splitting voltage of the non-catalytic heterogeneous bipolar membrane was constant at 3.8~4.0 V.
[References]
  1. Hosseini SM, Madaeni SS, Heidari AR, Amirimehr A, Desalination, 284, 191, 2012
  2. Nagarale RK, Gohil GS, Shahi VK, Rangarajan R, Colloids Surf. A: Physicochem. Eng. Asp., 251, 133, 2004
  3. Lee CS, Shin HS, Jun JH, Jung SY, Rhim JH, Membr. J., 12, 1, 2002
  4. Zhong PS, Widjojo N, Chung TS, Weber M, Maletzko C, J. Membr. Sci., 417, 52, 2012
  5. Al-Rashdi BAM, Johnson DJ, Hilal N, Desalination, 315, 2, 2013
  6. Cho CH, Oh KY, Kim SK, Yeo JG, Sharma P, J. Membr. Sci., 371(1-2), 226, 2011
  7. Strathmann H, Desalination, 264(3), 268, 2010
  8. Kim KS, Kim SH, Jung IH, J. Korean Ind. Eng. Chem., 12(5), 560, 2001
  9. Sung YT, Kum CK, Lee HS, Kim JS, Yoon HG, Kim WN, Polymer, 46(25), 11844, 2005
  10. Zendehnam A, Mokhtari S, Hosseini SM, Rabieyan M, Desalination, 347, 86, 2014
  11. Yoshida N, Ishisaki T, Watakabe A, Yoshitake M, Electrochim. Acta, 43(24), 3749, 1998
  12. Kwak NS, Koo JS, Hwang TS, Choi EM, Desalination, 285, 138, 2012
  13. Strathmann H, “Ion-exchange Membrane Processes in Water Treatment (Chapter6), Sustainability Science and Engineering, Elsevier:Amsterdam, 141-119, 2010.
  14. Ko DY, Kim IS, Hwang TS, Membr. J., 26(2), 97, 2016
  15. Jeong MH, Ko DY, Hwang TS, Membr. J., 25(5), 431, 2015
  16. Kumar P, Dutta K, Das S, Kundu PP, Appl. Energy, 123, 66, 2014
  17. Park CO, Rhim JW, Membr. J., 27(1), 84, 2017