Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.52, No.2, 272-277, 2014
구리이온을 함유한 PCB 폐에칭액의 Cross-flow 나노여과
Cross-flow Nanofiltration of PCB Etching Waste Solution Containing Copper Ion
본 연구는 인쇄회로기판(PCB) 제조 시 에칭공정에서 발생되는 구리이온(Cu+2)을 고농도로 함유한 황산 폐에칭액을 NF 막분리법을 사용하여 에칭액 회수와 구리이온 처리를 효율적으로 수행하기 위한 NF 막여과 공정의 운전조건을 설정하기 위한 기본 자료를 확보하는데 있다. 이를 위해 미국 Koch사의 SelRO MPS-34 4040 NF 막을 대상으로 구리이온을 고농도(5~30 g/L)로 함유한 모의 황산 폐에칭액의 cross-flow 나노여과 실험을 수행하여 투과 플럭스와 구리이온의 총괄 배제도를 측정하였다. 이 결과 투과 플럭스는 황산 폐에칭액 내 구리이온의 농도가 증가할수록, 황산 폐에칭액의 pH가 낮을수록 작아졌으며, 그 값은 최소 4.5 L/m2·h에서 최대 23 L/m2·h이었다. 황산 폐에칭액 내 구리이온의 총 배제도는 구리이온의 농도가 클수록, 용액의 pH가 낮을수록 그리고 폐에칭액의 순환유량이 작을수록 낮아졌으며, 황산 폐에칭액의 pH가 1 이상인 상태에서 70% 이상의 구리이온 배제가 가능하였다. NF 막을 12개월 동안 황산용액 내에 보관하여도 투과 플러스 와 구리이온 배제도의 유의한 변화가 없어 SelRO MPS-34 막모듈을 강산 조건에서 1년 이상 막모듈의 교체 없이 산성 폐에칭액 처리에의 사용이 가능하였다.
In this study the nanofiltration (NF) membrane treatment of a sulfuric acid waste solutions containing copper ion (Cu+2) discharging from the etching processes of the printed circuit board (PCB) manufacturing industry has been studied for the recycling of acid etching solution. SelRO MPS-34 4040 NF membrane from Koch company was tested to obtain the basic NF data for recycling of etching solution and separation efficiency (total rejection) of copper ion. NF experiments were carried out with a cross-flow membrane filtration laboratory system. The permeate flux was decreased with the increasing copper ion concentration in sulfuric acid solution and lowering pH of acid solution, and its value was the range of 4.5~23 L/m2·h. Total rejection of copper ion was decreased with the increasing copper ion concentration, lowering pH of acid solution and decreasing cross-flow rate. The total rejection of copper ion was more than 70% at the experimental condition. The SelRO MPS-34 4040 NF membrane was represented the stable flux and rejection for 1 year operation.
[References]
  1. Patterson JW, Environ. Sci. Technol., 23, 1032, 1989
  2. Meunier N, Laroulandie J, Blais JF, Tyagi RD, Bioresour. Technol., 90(3), 255, 2003
  3. Wisniewski J, Suder S, Desalination, 101, 245, 1995
  4. Mohammadi T, Razmi A, Sadrzadeh M, Desalination, 167(1-3), 379, 2004
  5. Hwang ST, Korean J. Chem. Eng., 28(1), 1, 2011
  6. Mulder M, Basic Principles of Membrane Technology, 2nd Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996
  7. Baker RW, Membrane Technology and Applications, 2nd Ed., John Wiley & Sons, New York, NY, 2004
  8. Childress AE, Elimelech M, J. Membr. Sci., 199, 253, 1996
  9. Yaroshcuk AE, Membrane Technol., 100, 9, 1998
  10. Tanninen J, Platt S, Weis A, Nystrom M, J. Membr. Sci., 240(1-2), 11, 2004
  11. Kang SH, Lee EG, Chang YK, Korean Chem. Eng. Res., 37(5), 713, 1999
  12. Al-Zoubi H, Omar W, Korean J. Chem. Eng., 26(3), 799, 2009
  13. Choi CM, Choi YH, Lee JH, Kim HJ, Kim NJ, Park BJ, Joo YK, Kang JS, Paik YK, Membrane J., 19(3), 252, 2009
  14. Shin HS, Jin CD, Youm KH, Membrane J., 19(4), 317, 2009
  15. Tanninen J, Manttari M, Nystrom M, Desalination, 189(1-3), 92, 2006