Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.52, No.2, 191-198, 2014
악취폐가스의 세미파일럿 규모 하이브리드 공정 처리: Thiobacillus sp. IW 및 반송슬러지를 접종한 담체를 충전한 바이오필터와 광촉매반응기로 구성된 하이브리드시스템의 운전
Semi-pilot Scaled Hybrid Process Treatment of Malodorous Waste Air: Performance of Hybrid System Composed of Biofilter Packed with Media Inoculated with Thiobacillus sp. IW and Return-sludge and Photocatalytic Reactor
퇴비공장 또는 공공시설에서 발생되는 악취폐가스의 대표적인 제거대상 오염원인 황화수소와 암모니아를 포함한 악취폐가스를 처리하기 위하여 여러 운전 조건 하에서 바이오필터와 광촉매반응기로 구성된 semi-pilot 하이브리드시스템을 운전하였다. 황화수소 및 암모니아를 동시 처리하는 바이오필터시스템에서는 황화수소의 처리성능과 다르게 암모니아의 처리성능은 암모니아만을 처리하는 바이오필터시스템보다 훨씬 떨어졌다. Semi-pilot 하이브리드시스템의 황화수소와 암모니아에 대한 제거효율은 각각 약 83% 및 약 65% 정도이었다. 따라서 semi-pilot 바이오필터시스템의 경우보다 황화수소 및 암모니아에 대한 제거효율은 각각 4 및 30% 정도 증가하였다. 또한 황화수소와 암모니아의 동시제거를 할 때에 황화수소와 암모니아의 최대 제거용량은 각각 약 60 및 37 g/m3/h이었다. 따라서 semi-pilot 바이오필 터시스템의 경우보다 황화수소 및 암모니아에 대한 최대 제거용량은 각각 약 9.1%와 약 23.3% 증가하였다. 그러므로 본 semi-pilot 하이브리드시스템은 semi-pilot 바이오필터시스템을 기준으로 황화수소보다 암모니아의 제거율과 최대 제거용량 제고에 더욱 기여하였다.
A semi-pilot hybrid system composed of a photocatalytic reactor and a biofilter was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by a biofilter system, its performance of ammonia removal was much more poor than that by a biofilter system treating waste air containing only ammonia, unlike its performance of hydrogen sulfide removal. For semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia turned out to be ca. 83 and 65%, respectively. Therefore, for semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia was increased by ca. 4 and 30%, respectively, compared to those of semi-pilot biofilter system (control). In addition, the maximum elimination capacities of hydrogen sulfide and ammonia for semi-pilot hybrid system turned out to be ca. 60 and 37 g/m3/h, respectively. These maximum elimination capacities of hydrogen sulfide and ammonia were estimated to be ca. 9.1% and ca. 23.3% greater than those for semipilot biofilter system (control), respectively. Therefore, the semi-pilot hybrid system contributed the enhancement of removal efficiency and the maximum elimination capacity of ammonia in a higher degree than that of hydrogen sulfide, compared to the semi-pilot biofilter system.
[References]
  1. Lebrero R, Gondim AC, Perez R, Garcia-Encina PA, Munoz R, Water Res., 49, 339, 2014
  2. Chung YC, Huang C, Tseng CP, J. Biotechnol., 52, 31, 1996
  3. Chung YC, Huang CP, Tseng CP, Biotechnol. Prog., 12(6), 773, 1996
  4. Chung YC, Huang C, Tseng CP, Chemosphere, 43, 1043, 2001
  5. Chung YC, Huang C, Tseng CP, Pan JR, Chemosphere, 41, 329, 2000
  6. Oyarzun P, Arancibia F, Canales C, Aroca GE, Process Biochem., 39(2), 165, 2003
  7. Cho KS, Ryu HW, Lee NY, J. Biosci. Bioeng., 90(1), 25, 2000
  8. Wani AH, Branion MR, Lau AK, J. Hazard. Mater., 60, 287, 1998
  9. Islander RI, Devinny JS, Mansfield F, Postyn A, Shin H, J. Environ. Eng., 117, 751, 1990
  10. Cox HHJ, Deshusses MA, Chem. Eng. J., 87(1), 101, 2002
  11. Gonzalez-Matute R, Rinker DL, Bioresour. Technol., 97(14), 1679, 2006
  12. Kim KY, Choi HL, J. Anim. Sci. & Technol., 43(6), 1005, 2001
  13. Kuroda K, Osada T, Yonaga M, Kanematu A, Nitta T, Mouri S, Kojima T, Bioresour. Technol., 56(2-3), 265, 1996
  14. Chung YJ, Korean Society of Water and Wastewater, 13, 43
  15. Lee EJ, Park H, Lim KH, Korean Chem. Eng. Res., 51(5), 1, 2013
  16. Lim KH, Park SW, Lee EJ, Hong SH, Korean J. Chem. Eng., 22(1), 70, 2005
  17. Mohseni M, Prieto L, Int. J. Environ. Technol. Manag., 9, 47, 2008
  18. Hinojosa-Reyes M, Rodriguez-Gonzalez V, Arriaga S, “Enhancing Ethylbenzene Vapors Degradation in a Hybrid System Based on Photocatalytic Oxidation UV/TiO2-n and a Biofiltration Process,” J. Hazard. Mater., 209-210, 365-371, 2012
  19. Lim KH, Jung YJ, Park LS, Min KS, Korean Chem. Eng. Res., 39(5), 600, 2001
  20. Lee EJ, Lim KH, J. Chem. Eng. Jpn., 46(9), 636, 2013
  21. Lim KH, Park SW, Korean J. Chem. Eng., 23(6), 965, 2006
  22. Wagner M, Rath G, Koops HP, Foos J, Amann R, Wat. Sci. Technol., 34, 237, 1996
  23. Schramm A, Larsen LH, Revsbech NP, Ramsing NB, Amann R, Appl. Environ. Microbiol., 64, 3480, 1998
  24. Hicks R, Amann R, Stahl DA, Appl. Environ. Microbiol., 58, 2158, 1992
  25. Glckner FO, Fuchs BM, Amann R, Appl. Environ. Microbiol., 65, 3721, 1999
  26. Lee EJ, Park SW, Nam DV, Chung CH, Lim KH, Korean Chem. Eng. Res., 48(3), 391, 2010