Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.52, No.2, 175-181, 2014
가축 분뇨를 이용한 미생물 연료전지의 특성 및 MEA 열화
Characteristics of Microbial Fuel Cells Using Livestock Waste and Degradation of MEA
고분자전해질 연료전지용 MEA(Membrane and Electrode Assembly)와 가축분뇨를 이용해 미생물연료전지(MFC)를 구동하였다. 여러 균을 혼합해 MFC를 구동했을 때 개별적으로 구동했을 때보다 높은 개회로전위(OCV)를 나타냈다. 돼지분뇨, 소분뇨, 닭분뇨, 오리 분뇨 중 돼지 분뇨를 이용했을 때 제일 높은 OCV 540mV를 보였다. 그리고 돼지분뇨에서 최고 963mW/m2의 전력이 발생하였다. MFC 구동과정에서 MEA의 Na2+, Ca2+, K+ 이온 및 불순물들에 의한 오염이 MFC의 낮은 성능의 한 원인임을 확인하였다.
Microbial fuel cells (MFC) were operated with livestock wastes and PEMFC (Proton Exchange Membrane Fuel Cells) MEA (Membrane and Electrode Assembly). OCV of MFC with mixtures of microbial was higher than that of MFC with single microbial. MFC using pig wastes showed highest OCV (540 mV) among cow waste, chicken waste and duck waste. And the power density of MFC using pig waste was 963 mW/m2. Contamination of MEA with Na2+, Ca2+, K+ ion and impurities was the one cause for low performance of MFC during operation.
[References]
  1. Nester EW, Anderson DG, Roberts CE, Nerster MT, Microbiology: A Human Perspective, 7th ed., McGraw-Hill, New York, 2011
  2. Ministry of Environment, Environmemtal Statistics Yearbook, No. 25, Ministry of Environment, 2012
  3. http://eztaxon-e.ezbiocloud.net.
  4. Du Z, Li H, Gu T, Biotechnol. Adv., 25, 464, 2007
  5. Kim JR, Min B, Logan BE, Appl. Microbiol. Biotechnol., 68(1), 23, 2005
  6. Min BK, Kim JR, Oh SE, Regan JM, Logan BE, Water Res., 39, 4961, 2005
  7. Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487, 2011
  8. Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68, 2013
  9. Pham TH, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Hofte M, Verstraete W, Rabaey K, Appl. Microbiol. Biotechnol., 77(5), 1119, 2008
  10. Watanabe K, Manefield M, Lee M, Kouzuma A, Curr. Opin. Biotechnol., 20, 633, 2009
  11. Liu M, Yuan Y, Zhang LX, Zhuang L, Zhou SG, Ni JR, Bioresour. Technol., 101(6), 1807, 2010
  12. van Dyk JS, Sakka M, Sakka K, Pletschke BI, Enzyme Microb. Technol., 45(5), 372, 2009
  13. Amutha KB, Murugesan AG, Renewable Energy, 50, 621, 2013
  14. Wang W, Wang Z, Lin X, Wang ZW, Fu FF, Talanta, 100, 338, 2012
  15. Ruan Z, Zhou S, Jiang S, Sund L, Zhaie Y, Wang Y, Chen C, Zhao B, Bioresour. Technol., 147, 477, 2013
  16. Moreau1 JL, Arnaud1 A, Galzy1 P, Midrobiological Research, 149(1), 47, 1994
  17. Cerqueira VS, Hollenbach EB, Maboni F, Vainstein MH, Camargo FAO, Peralba MDR, Bento FM, Bioresour. Technol., 102(23), 11003, 2011
  18. Morris JM, Jin S, Crimi B, Pruden A, Chem. Eng. J., 146(2), 161, 2009
  19. Nandy A, Kumar V, Kundu PP, Enzyme Microb. Technol., 53(5), 339, 2013
  20. Zuo Y, Xing D, Regan JM, Logan BE, Appl. Environ. Microbiol, 74, 3130, 2008
  21. Lee DJ, Show KY, Wang A, Bioresour. Technol., 136, 697, 2013