Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.3, 425-431, 2019
Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications
As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of LaCrO3, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to Bsite of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the microtubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the LaCr0.8Ru0.1Ni0.1O3 micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.
[References]
  1. Blurton KF, Sammells AF, J. Power Sources, 4, 263, 1979
  2. Zhang X, Wang XG, Xie Z, Zhou Z, Green Energy Environment, 1, 4, 2016
  3. Li Y, Lu J, ACS Energy Lett., 2(6), 1370, 2017
  4. Wang ZL, Xu D, Xu JJ, Zhang XB, Chem. Soc. Rev., 43, 7746, 2014
  5. Cheng F, Chen J, Chem. Soc. Rev., 41, 2172, 2012
  6. Li Y, Gong M, Liang Y, Feng J, Kim J, Wang H, Hong G, Zhang B, Dai H, Nat. Comm., 4, 1805, 2013
  7. Grande L, Paillard E, Hassoun J, Park JB, Lee YJ, Sun YK, Passerini S, Scrosati B, Adv. Mater., 27(5), 784, 2015
  8. Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B, Nat. Chem., 4, 579, 2012
  9. Lee JS, Kim ST, Cao R, Choi NS, Liu M, et al., Adv. Eng. Mater., 1, 34, 2012
  10. Caramia V, Bozzini B, Materials for Renewable and Sustainable Energy, 3, 28(2014).
  11. Hwang HJ, Chi WS, Kwon O, Lee JG, Kim JH, Shul YG, ACS Appl. Mater. Interfaces, 8(39), 26298, 2016
  12. Liu Y, Sun Q, Li W, Adair KR, Li J, Sun X, Green Energy Environment, 2, 246, 2017
  13. Kwon O, Hwang HJ, Ji Y, Jeon OS, Kim JP, Lee C, Shul YG, Sci. Rep., 9, 3175, 2019
  14. Liu Q, Chang Z, Li Z, Zhang X, Small Methods, 2, 170023, 2018
  15. Zhang T, Zhou H, Nat. Comm., 4, 1817, 2013
  16. Mainar AR, Iruin E, Colmenares LC, Kvasha A, Meatza I, Bengoechea M, Leonet O, Boyano I, Zhang Z, Blazquez JA, J. Energy Storage, 15, 304, 2018
  17. Balaish M, Kraytsberg A, Ein-Eli Y, Phys. Chem. Chem. Phys., 16, 2801, 2014
  18. Gelman D, Shvartsev B, Ein-Eli Y, J. Mater. Chem. A, 2, 20237, 2014
  19. Wang ZL, Xu D, Xu JJ, Zhang XB, Chem. Soc. Rev., 43, 7746, 2014
  20. Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H, Nat. Comm., 4, 1805, 2013
  21. Chen Y, Ji S, Zhao S, Chen W, Dong J, Cheong WC, et al., Nat. Comm., 9, 5422, 2018
  22. Chen Z, Yu A, Higgins D, Li H, Wang H, Chen Z, Nano Lett., 12, 1946, 2012
  23. Jung KN, Hwang SM, Park MS, Kim KJ, Kim JG, Dou SX, Kim JH, Lee JW, Sci. Rep., 5, 7665, 2014
  24. Miao H, Wang ZH, Wang Q, Sun SS, Xue YJ, Wang F, Zhao JP, Liu ZP, Yuan JL, Energy, 154, 561, 2018
  25. Li Y, Xu H, Chien PH, Wu N, Xin S, Xue L, Park K, Hu YY, Goodenough JB, Angew. Chem.-Int. Edit., 57, 8587, 2018
  26. Anderson HU, Kuo JH, Sparlin DM, Proceedings of the Electrochemical Society, PV 1989-19, 3-14(1989).
  27. Pena MA, Fierro JLG, Chem. Rev., 101(7), 1981, 2001
  28. Voorhoeve RJH, Johnson DW, Remeika JP, Gallagher PK, Science, 4, 827, 1977
  29. Karatzas X, Dawody J, Grant A, Svensson EE, Pettersson LJ, Appl. Catal. B: Environ., 101(3-4), 226, 2011
  30. Chervin CN, Long JW, Brandell NL, Wallace JM, Kucko NW, Rolison DR, J. Power Sources, 207, 191, 2012
  31. Jeon Y, Park DH, Park JI, Yoon SH, Mochida I, Choy JH, Shul YG, Sci. Rep., 3, 2902, 2013
  32. Jeon Y, Lee C, Rhee J, Lee G, Myung JH, Park M, Park JI, Einaga H, Shul YG, Fuel, 187, 446, 2017
  33. Jeon Y, Myung JH, Hyun SH, Shul YG, Irvine JTS, J. Mater. Chem. A, 5, 3966, 2017
  34. Jeon Y, Ji Y, Cho YI, Lee C, Park DH, Shul YG, ACS Nano, 12, 6819, 2018
  35. Sunarso J, Torriero AAJ, Zhou W, Howlett PC, Forsyth M, J. Phys. Chem. C, 116, 5827, 2012
  36. Cazaux J, J. Electron Spectrosc. Relat. Phenom., 105, 155, 1999
  37. Palina N, Wang L, Dash S, Yu X, Breese MBH, Wang J, Rusydi A, Nanoscale, 9, 6094, 2017
  38. Gilbert B, Andres R, Perfetti P, Margaritondo G, Rempfer G, de Stasio G, Ultramicroscopy, 83, 129, 2000
  39. Harano T, Shibata G, Ishigami K, Takashashi Y, Verma VK, Singh VR, et al., Appl. Phys. Lett., 102, 222404, 2013
  40. Masuda Y, Hosokawa S, Inoue M, J. Ceram. Soc. Jpn., 119, 850, 2011