Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.2, 163-169, 2017
상용 고용량 리튬이온이차전지용 NCA 양극활물질의 전기화학적 특성
Electrochemical Properties of Commercial NCA Cathode Materials for High Capacity of Lithium Ion Battery
LiNi1-x-yCoxAlyO2(x=0.15, y=0.045 혹은 0.05, NCA) 양극소재의 전기화학적 특성 및 양극소재의 입자 크기 분포에 대한 리튬이온이차전지의 수명특성에 대한 영향을 살피기 위해 두 종의 상업용 NCA (NCA#1, NCA#2) 양극소재를 리튬이온이차전지의 양극으로 사용하였다. NCA#1은 약 5 μm의 균일한 구형의 입자로 구성되어 있고 NCA#2는 약 5 μm와 11 μm 정도의 입자들이 혼합되어 있는 분말이다. 충방전 측정 결과 NCA#2는 초기 방전용량은 197.0 mAh/g으로 NCA#1에 비해 높게 나타났다. NCA#1과 NCA#2의 용량 유지율(30사이클 기준)은 각각 92%와 94%로 나타났다.
In order to investigate the electrochemical properties and the particle size effect of LiNi1-x-yCoxAlyO2 (x=0.15, y=0.045 or 0.05, NCA) for lithium ion batteries (LIBs), two commercial NCA cathode materials (NCA#1, NCA#2) were used as cathode materials for LIB. The average particle size of the NCA#1 which consisted of uniform spherical particles was found to be approximately 5 μm. NCA#2 consisted of particles with bimodal size distribution of approximately 5 μm and 11 μm. From the results of charge-discharge performance test, a high initial discharge capacity of 197.0 mAh/g was obtained with NCA#2, which is a higher value than that with NCA#1. The cycle retentions of NCA#1 and NCA#2 up to 30 cycles were 92% and 94%, respectively.
[References]
  1. Kang KY, Choi MG, Lee YG, Kim KM, Korean Chem. Eng. Res., 49(5), 541, 2011
  2. Lee HY, Lee JD, Korean Chem. Eng. Res., 54(6), 746, 2016
  3. Wu BH, Wang J, Li JY, Lin WQ, Hu HN, Wang F, Zhao SY, Gan CL, Zhao JB, Electrochim. Acta, 209, 315, 2016
  4. Vu DL, Lee JW, Korean J. Chem. Eng., 33(2), 514, 2016
  5. Hua W, Zhang J, Zheng Z, Liu W, Peng X, Guo XD, Zhong B, Wang YJ, Wang X, J. Chem. Soc.-Dalton Trans., 43, 14824, 2014
  6. Nitta N, Wu F, Lee JT, Yushin G, Mater. Today, 18, 252, 2015
  7. Liu J, Wang S, Ding Z, Zhou R, Xia QJ, Chen L, Wei W, Wang P, ACS Appl. Mater. Interfaces, 8, 18008, 2016
  8. Choo S, Kim HY, Yoon DY, Choi W, Oh SH, Ju JB, Ko JM, Jang H, Cho WI, Korean J. Chem. Eng., 31(5), 905, 2014
  9. Conry TE, Mehta A, Cabana J, Doeff MM, Chem. Mater., 24, 3307, 2012
  10. Lim SN, Ahn W, Yeon SH, Bin Park S, Electrochim. Acta, 136, 1, 2014
  11. Lee DJ, Scrosati B, Sun YK, J. Power Sources, 196(18), 7742, 2011
  12. Lee SH, Yoon CS, Amine K, Sun YK, J. Power Sources, 234, 201, 2013
  13. Liu W, Hu G, Du K, Peng Z, Cao Y, Surf. Coat. Technol., 216, 267, 2013
  14. Kang SH, Kim J, Stoll ME, Abraham D, Sun YK, Amine K, J. Power Sources, 112(1), 41, 2002
  15. Santhanam R, Rambabu B, J. Power Sources, 195(13), 4313, 2010
  16. Chang ZR, Chen ZJ, Wu F, Tang HW, Zhu ZH, Acta Phys. Chim. Sin., 24, 513, 2008
  17. Chang ZR, Chen ZJ, Wu F, Yuan XZ, Wang HJ, Electrochim. Acta, 54(26), 6529, 2009
  18. Dahn JR, Sacken UV, Michal CA, Solid State Ion., 44, 87, 1990
  19. Reimers JN, Rossen E, Jones CD, Dahn JR, Solid State Ion., 61, 335, 1993
  20. Wu KC, Wang F, Gao LL, Li MR, Xiao LL, Zhao LT, Hu SJ, Wang XJ, Xu ZL, Wu QG, Electrochim. Acta, 75, 393, 2012
  21. Li W, Reimers JN, Dahn JR, Solid State Ion., 67(1-2), 123, 1993
  22. Makimura Y, Sasaki T, Nanaka T, Nishimura YF, Uyama T, Okuda C, Itou Y, Takeuchi Y, J. Mater. Chem. A, 4, 8350, 2016