Issue
Korean Chemical Engineering Research,
Vol.50, No.5, 933-937, 2012
벗김전압전류법을 이용한 카본나노튜브 전극에서의 구리 분석
Analysis of Trace Copper Metal at The Electrode Consisting of Carbon Nanotube using Stripping Voltammetry
본 연구에서는 환경오염을 발생시키는 주요한 중금속 물질의 하나인 구리를 상대적으로 쉽게 검출하기 위해, CNT 전극 및 벗김전압전류법을 이용하여 구리 금속의 감도 향상을 위한 최적조건 및 민감도를 평가하였다. 또한 구리의 벗김반응이 발생될 때의 반응 메카니즘에 대한 연구도 수행하였다. 이를 위해, 네모파 벗김전압전류법 및 선형주사 전압전류법등의 전기화학적 분석법이 이용되었다. 평가 결과, 네모파 벗김전압전류법의 최적조건으로, 15 mV의 네모파증폭율, 60 Hz의 주파수, -1.0V vs. Ag/AgCl의 석출전위 및 200초의 석출시간이 결정되었다. 구리 금속의 민감도를 측정한 결과 1.824 μA/μM의 민감도를 얻을 수 있었다. 선형주사 전압전류법을 이용하여 구리의 벗김반응에 영향을 끼치는 인자를 평가하였을 때, 확산반응 보다는 표면반응이 구리의 벗김반응 성능에 영향을 끼치는 것으로 측정되었다. 이러한 전기화학적 분석 결과가 다른 참고문헌들과 비교되어졌고, 구리금속의 민감도 측면에서 본 연구에서 제안한 CNT 전극의 우수함이 입증되었다.
In the present study, we evaluate the sensitivity and optimal stripping voltammetry (SV) conditions of copper (Cu), which is one of the main trace heavy metals inducing the environmental contamination, using carbon nanotube (CNT) electrode. In addition, the reaction mechanism of stripping reaction of Cu is investigated. The electrochemical analyses such as squarewave stripping voltammetry (SWSV) and linear scan voltammetry (LSV) are used for the evaluations. As a result of that, the best SWSV conditions like squarewave amplitude of 15 mV, frequency of 60 Hz, deposition potential of -1.0V vs. Ag/AgCl and deposition time of 200s are determined with the measured Cu sensitivity of 1.824 μA/μM. As a driving force affecting the stripping reaction of Cu, surface reaction is more dominant one than diffusion. These results are compared with other reference results and it is confirmed that our suggested CNT electrode gives rise to better Cu sensitivity result than other references.
[References]
  1. World Health Organization, Guidelines for Drinking Water Quality, http://www.who.int/water_sanitation_health/dwq/gdwq3rev/en/.
  2. Zhuang J, Zhang L, Lu W, Shen D, Zhu R, Pan D, Int. J. Electrochem.Sci., 6, 4690, 2011
  3. Zhu X, Liang H, Zhao S, Yan H, Han D, Int. J. Environ. Anal.Chem., 88, 689, 2008
  4. Teixeira LSG, Rocha RBS, Sobrinho EV, Guimares PRB, Pontes LAM, Teixeira JSR, Talanta., 72, 1073, 2007
  5. Wang J, “Stripping Analysis,” J. Wiley, New York, 1988
  6. Kim IK, Park SW, Anal. Sci. Technol., 9(4), 93A, 1996
  7. ALS Reference electrodes, http://www.als-japan.com/1043.html.
  8. Shin SH, Hong HG, Bull. Korean Chem. Soc., 31(11), 3077, 2010
  9. Wang J, Hocevar SB, Ogorevc B, Electrochem. Comm., 6, 176, 2004
  10. Baughman RH, Zakhidov AA, de Heer WA, Science., 297, 787, 2002
  11. Betelu S, Vautrin-Ul C, Chauss A, Electrochem. Comm., 11, 383, 2009
  12. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y, Biosens. Bioelectron., 25, 901, 2009
  13. Bard AJ, Kaulkner LR, Electrochemical Methods, John Wiley & Sons, Inc, New York, 2000