Issue
Korean Chemical Engineering Research,
Vol.50, No.5, 908-912, 2012
수증기개질 가스화반응을 이용한 나왕톱밥으로부터 수소제조특성
Production of Hydrogen by Thermochemical Transition of Lauan Sawdust in Steam Reforming Gasification
바이오매스를 이용하여 수소 생산을 목적으로 가스화 반응기를 이용하여 라왕 톱밥의 수증기 개질을 이용한 가스화연구를 수행하였다. 1 m의 높이와 10.2 cm의 내경을 갖는 고정층 반응기에서 촉매와 온도에 따른 가스화반응에 미치는 영향을 분석하였다. 가스화반응 중에 수증기개질효과를 위하여 일정량의 스팀을 주입하였다. 톱밥과 탄산칼륨(K2CO3), 탄산나트륨(Na2CO3), 탄산칼슘(CaCO3), 탄산나트륨+탄산칼륨, 탄산마그네슘+탄산칼슘 촉매를 8:2의 일정한 비율로 혼합한 후 고정층 가스화 반응기에 주입하여 400~700 ℃의 온도에서 가스화반응에 따른 생성되는 기체의 조성을 기체 크로마토그래피를 이용하여 분석하였다. 촉매를 사용하였을 때 비촉매의 경우보다 수소, 메탄, 일산화탄소의 생성분율이 높게 나타났다. 온도의 증가에 따라 생성되는 수소, 메탄, 일산화탄소의 생성분율이 증가하였으며, Na2CO3 촉매에서 가장 높은 수소수율을 나타났다.
Lauan sawdust was gasified by steam reforming for hydrogen production from biomass waste. The fixed bed gasification reactor with 1m height and 10.2 cm diameter was utilized for the analysis of temperature and catalysts effect. Steam was injected to the gasification reactor for the steam reforming effect. Lauan sawdust was mixed with potassium carbonate, sodium carbonate, calcium carbonate, sodium carbonate + potassium carbonate and magnesium carbonate + calcium carbonate catalysts of constant mass fraction of 8:2 which was injected to the fixed gasification equipment. The compositions of production gas of gasification reaction were analyzed at the temperature range from 400 ℃ to 700 ℃. Fractions of hydrogen, methane and carbon monoxide gas in the production gas increased when catalysts were used. Fractions of hydrogen, methane and carbon monoxide gas were increased with increasing temperature. The highest hydrogen yield was obtained with sodium carbonate catalyst.
[References]
  1. Kim DH, Lee YJ, Yu MJ, Park DW, Kim MS, Sang BI, J. of KSEE., 28(4), 362, 2006
  2. Lee SH, Kim YG, Hong JC, Yoon SJ, Choi YC, Lee JG, Proceeding of the Korean Society for New and Renewable Energy., 467, 2005
  3. Kim RH, Energy transition and industrialization of biomass, Ajin Publishing Co., Ltd, Seoul, 2005
  4. Son JI, Park DW, Hydrogen energy production Technology, Ajin Publishing Co., Ltd, Seoul, 2007
  5. Lee SG, Lim SK, Bae JM, Proceeding of the Korean Society for New and Renewable Energy., 340, 2006
  6. Wei L, Xu S, Zhang L, Liu C, Zhu H, Liu S, Int. J. Hydrog. Energy., 32(1), 24, 2007
  7. Jeon JK, Kim JM, Park YK, Park HJ, Myung S, Kim JS, Choi J, Kim S, Eom Y, J. Korean Ind. Eng. Chem., 15(8), 901, 2004
  8. Jung HJ, Kim CH, Son JE, Kim LH, Shin HY, J. Korean Ind. Eng. Chem., 19(2), 209, 2008
  9. Altun NE, Hicyilmaz C, Kok MV, J.Anal. Appl. Pyrolysis., 67(2), 369, 2003
  10. Myung S, Eom Y, Dong JI, Park YK, Kang BS, Jeon JK, J. Korean Ind. Eng. Chem., 15(8), 896, 2004
  11. Yun JH, Kim WH, Keel SI, Min TJ, Roh SA., J. Korean Resources Recycling., 16(6), 28, 2007
  12. Sutton D, Kelleher B, Ross JRH, Fuel Process. Technol., 73(3), 155, 2001
  13. Baron RE, Porter JH, Hammond OH, Chemistry of Coal Utilization., John Wiley & Sons, 1495, 1981