Issue
Korean Chemical Engineering Research,
Vol.50, No.5, 894-899, 2012
어트리션 밀과 DMF 용매를 이용한 폐 인쇄회로기판에서 분리된 재생 유리섬유의 재활용
Recycling of Separate Glass Fiber from Waste Printed Circuit Boards Using Attrition Mill and DMF
폐 전자제품의 양이 지속적으로 증가하므로 폐 인쇄회로기판(WPCBs: waste printed circuit boards)의 재활용에서 금속과 유리섬유 및 에폭시 수지를 분리하는 방법에 대한 연구가 필요하다. 본 연구에서는 WPCBs로부터 금속과 유리섬유 및 에폭시 수지를 분리하기위해 dimethylformamide 용매와 어트리션 밀 반응기를 사용하였다. WPCBs에서 유리섬유의 분리는 다양한 교반기를 이용하여 교반속도를 300~600 rpm에서 반응시간을 1~2 h에서 반응을 수행하였다. WPCBs에서 에폭시 수지의 분리도를 재생 유리섬유의 열 중량 분석을 통해 분석하였으며 기계화학적 방법인 어트리션밀 교반기에서 에폭시 수지의 분리도가 증가하였다. 재생 유리섬유를 보강재로 재활용하기 위하여 재생 유리섬유/불포화 폴리에스테르 수지 복합재료로 적용하였다.
In recent years, recycling process has come to be necessary for separating metals, glass fibers and polymer from WPCBs (waste printed circuit boards) due to an increasing amount of electronic device waste. In this study, dimethylformamide (DMF) and attrition mill reactor were used to separate the component such as metals, glass fiber and epoxy resin from WPCBs. Separation of glass fiber from WPCBs was carried out under stirring rates 300~600 revolution per minute (rpm) for 1~2 h as the various agitator. The recycled glass fibers (RGF) were analyzed by thermogravimetric analyzer (TGA) for degree of separation of epoxy resin in the WPCBs. The degree of separation of epoxy resin of WPCBs increased in attrition mill agitator as a mechanochemical process for recycling WPCBs. The RGF separated in the WPCBs was applied as a reinforcement in the RGF/unsaturated polyester composites to reuse as a reinforcement.
[References]
  1. Yoo JM, Jeong JK, Yoo KK, Lee JC, Kim WB, Wast. Manage., 29, 1132, 2009
  2. Lee JC, Song HT, Yoo JM, Resour. Conserv. Recycl., 50, 380, 2007
  3. Kelly EJ, “Base Material Components,” in Printed Circuits Handbook, C. F. Coombs, Editor, McGraw-Hill, New York, Vol 1, Chap. 7, 2008
  4. Zang S, Forssberg E, Resour. Conserv. Recycl., 21, 247, 1997
  5. Guo J, Li J, Rao Q, Xu Z, Environ. Sci. Technol., 42, 624, 2008
  6. Hall WJ, Williams PT, Resour. Conserv. Recycl., 51, 691, 2007
  7. Guo JY, Guo J, Xu ZM, J. Hazard. Mater., 168(2-3), 567, 2009
  8. Sato Y, Kondo, Tsujita YK, Kawai N, Polym.Degrad. Stabil., 89, 317, 2005
  9. Koyanaka S, Endoh S, Ohya H, Adv. Powder Technol., 17(1), 113, 2006
  10. Dang WR, Kubouchi M, Sembokuya H, Tsuda K, Polymer, 46(6), 1905, 2005
  11. Park YJ, Fray DJ, J. Hazard. Mater., 164(2-3), 1152, 2009
  12. Goto M, Sasaki M, Hirose T, J. Mater. Sci., 41(5), 1509, 2006
  13. Braun D, Gentzkow W, Rudolf AP, Polym. Degrad. Stabil., 74, 25, 2001
  14. Cunliffe AM, Jones N, Williams PT, Environ. Technol., 24, 653, 2003
  15. Giulvezan G, Carberry W, Boeing Environ Technotes., 8, 1, 2003
  16. Hwang TS, Choi DM, Choi JR, Lim JH, Park JK, Korean J. Mater. Research., 8, 13, 1998
  17. Lee SH, Choi HO, Kim JS, Lee CK, Kim YK, Ju CS, Korean J. Chem. Eng., 28(2), 449, 2011
  18. Lee JK, Kim SY, Ju CS, Korean Chem. Eng. Res., 50(1), 30, 2012
  19. Feith S, Boiocchi E, Mathys G, Mathys Z, Gibson AG, Mouriz AP, Composites: Part B., 42, 350, 2011