Issue
Korean Chemical Engineering Research,
Vol.50, No.5, 885-889, 2012
활성탄의 이산화탄소 흡착에 미치는 유무기계 첨가제의 영향
Effects of Inorganic-organic Additives on CO2 Adsorption of Activated Carbon
본 연구에서는 활성탄소의 이산화탄소 흡착 능력을 향상시키기 위한 아민과 금속산화물 첨가제에 관하여 고찰하였다. 표면 처리한 활성탄소의 물리화학적 특성은 X-ray photoelection specstroscopy(XPS), 질소등온흡착곡선, X-ray diffraction (XRD), BET 장치를 이용하여 분석하였다. 실험결과, 활성탄소 표면의 아민 기능기는 산성가스인 이산화탄소를 선택적으로 흡착하기 위한 염기성 자리로 작용하며, 2차아민을 갖는 기능기가 1차아민에 비하여 이산화탄소흡착능력이 우수함을 확인하였다. 활성탄소에 첨가된 금속산화물은 표면에서 전자 도우너(electron donor) 역할을 하며 알칼리 특성을 지니고, 아민 기능기와 유사하게 이산화탄소 가스와 산-염기 반응을 유도한다. 금속산화물 표면처리를 했을 경우 순수한 활성탄소와 비교하여 이산화탄소 흡착 용량이 85% 증가하였으며, 이러한 결과로 미루어 볼 때 금속산화물 첨가제는 활성탄소의 이산화탄소 흡착능력을 향상시키기 위한 목적으로 아민 첨가제와 병행하거나 대체할 수 있는 물질로 기대된다.
In this study, amine and metal oxide additives were investigated to improve CO2 adsorption capacity of activated carbons (ACs). The characteristics of surface modified ACs were studied by X-ray photoelectron spectroscopy(XPS), N2 adsorption, X-ray diffraction (XRD), and BET. Amine surface treatment decreased specific surface area and pore volume of ACs, but increased alkalinity by the incorporated nitrogen functional groups. Adsorption capacities of amine functionalized ACs was larger than original ACs, because basic group which can react with CO2 was grafted on the ACs surface. Presence of copper oxides on ACs also enhances the carbon dioxide adsorption. The copper oxides could increase the adsorption rate of carbon dioxides due to the acid-base interaction (or electron acceptor-donor interaction). It was found that copper oxide loading was a promising method to improve the CO2 adsorption capacity of ACs.
[References]
  1. Xu X, Song CS, Andresen JM, Miller BG, Scaroni AW, Micropor. Mesopor. Mater., 62, 29, 2003
  2. Yoo YJ, Kim HS, Park JH, Han SS, Cho SH, J. Korean Ind. Eng. Chem., 18(3), 273, 2007
  3. Li PY, Zhang SJ, Chen SX, Zhang QK, Pan JJ, Ge BQ, J. Appl. Polym. Sci., 108(6), 3851, 2008
  4. Hughes RW, Lu DY, Anthony EJ, Macchi A, Fuel Process. Technol., 86(14-15), 1523, 2005
  5. Lee KM, Jo YM, J. Korean Ind. Eng. Chem., 19(5), 533, 2008
  6. Jeon JK, Park YK, Chue K, J. KOSAE., 20, 99, 2004
  7. Hutson ND, Chem. Mater., 16, 4135, 2004
  8. Arenillas A, Rubiera F, Parra JB, Ania CO, Pis JJ, Appl. Surf. Sci., 252(3), 619, 2005
  9. Drage TC, Arenillas A, Smith KM, Pevida C, Piippo S, Snape CE, Fuel, 86(1-2), 22, 2007
  10. Maroto-Valer MM, Tang Z, Zhang YZ, Fuel Process. Technol., 86(14-15), 1487, 2005
  11. Przepiorski J, Skrodzewicz M, Morawski AW, Appl. Surf. Sci., 225(1-4), 235, 2004
  12. Mohamed KA, Wan MAWD, Yin CY, Adinata D, Sep. Purif. Technol., 62, 611, 2008
  13. Park SJ, Kim KD, Lee JR, J. Korean Ind. Eng. Chem., 9(6), 920, 1998
  14. Park SJ, Kim KD, J. Colloid Interface Sci., 212(1), 186, 1999
  15. Knowles GP, Delaney SW, Chaffee AL, Ind. Eng. Chem. Res., 45(8), 2626, 2006
  16. Gray ML, Soong Y, Champagne KJ, Pennline H, Baltrus JP, Stevens RW, Khatri R, Chuang SSC, Filburn T, Fuel Process. Technol., 86(14-15), 1449, 2005
  17. Xu XC, Song CS, Miller BG, Scaroni AW, Fuel Process. Technol., 86(14-15), 1457, 2005
  18. Choi S, Drease JH, Jones CW, Chem. Sus. Chem., 2, 796, 2009
  19. Schladt MJ, Filburn TP, Helble JJ, Ind. Eng. Chem. Res., 46(5), 1590, 2007
  20. Son WJ, Choi JS, Ahn WS, Micropor. Mesopor. Mater., 113, 31, 2008
  21. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309, 1938
  22. Plaza MG, Pevida B, Fermoso AA, Rubiera F, Pis JJ, J. Ther. Anal. Calorim., 92, 601, 2008
  23. Dean JA, Lange’s Handbook of Chemistry, fifteenth ed., McGrawHill, 1999
  24. Tsuda T, Fujiwara T, Taketani Y, Saegusa T, Chem.Lett., 2161, 1992
  25. Kim BJ, Cho KS, Park SJ, J. Colloid Interface Sci., 342(2), 575, 2010
  26. Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW, Energy Fuels, 16(6), 1463, 2002