Issue
Korean Chemical Engineering Research,
Vol.50, No.5, 766-771, 2012
디메틸 카보네이트(DMC)로부터 디페닐카보네이트(DPC) 합성을 위한 반응속도론
Reaction Kinetics for the Synthesis of Diphenyl Carbonate from Dimethyl Carbonate
폴리카보네이트(Polycarbonate (PC))는 전기, 전자, 자동차, 건축 등 여러 분야에 널리 사용되고 있는 엔지니어링 플라스틱으로 사용량이 점차 증가하고 있다. 일반적으로 PC는 bisphenol A (BPA)와 phosgene을 반응시켜 합성한다. 하지만 이 반응에서 사용되는 phosgene은 심각한 독성을 갖고 있어, 환경 안전 면에서 문제가 제기되고 있다. Phosgene을 대체하기 위해 DPC을 이용하는 공정이 제안되었다. DPC는 DMC (Dimethyl Carbonate)와 Phenol의 에스테르교환 반응에 의해 합성된다. PBO 촉매를 사용한 DPC 합성 반응에 대하여 반응온도, DMC/Phenol의 비 그리고 촉매 농도 변화가 반응 수율에 미치는 영향을 알아보았다. 또한 DPC 합성 반응에 대한 반응속도 모델을 구하였고 반응속도 모델이 예측한 값이 실험치와 잘 일치함을 보였다.
PC (polycarbonate) is one of the widely used engineering plastics. Polycarbonate (PC) is traditionally produced by the reaction of phosgene and bisphenol-A. This phosgene process has the disadvantage as the high toxicity and corrosiveness of phosgene. The main point of focus to overcome the disadvantage of phosgene based process has been a route through dimethyl carbonate (DMC) to diphenyl carbonate (DPC). In this paper, for the DPC synthesis reaction using PBO as a catalyst, the effect of reaction temperature, reactant ratio, catalyst concentration on the reaction yield was investigated. A kinetic model for the DPC synthesis reaction was proposed and kinetic parameters for the proposed model was determined from batch reactor experiments. The predicted results by the proposed model were in good agreement with the experimental results.
[References]
  1. Kim SH, Won HY, Polym. Sci. Technol., 7(4), 364, 1996
  2. Fu Z, Ono Y, J. Mol. Catal. A: Chem., 118, 293, 1997
  3. Niu H, Guo H, Yao J, Wang Y, Catal. A Chem., 259, 292, 2006
  4. Haubrock J, Raspe M, Versteeg GF, Kooijman HA, Taylor R, Hogendoorn JA, Ind. Eng. Chem. Res., 47(24), 9854, 2008
  5. Haubrock J, Wermink W, Versteeg GF, Kooijman HA, Taylor R, Annaland MV, Hogendoorn JA, Ind. Eng. Chem. Res., 47(24), 9862, 2008
  6. Haubrock J, “The Process of Dimethyl Carbonate to Diphenyl Carbonate: Thermodynamics, Reaction Kinetics and Conceptual Process Design,” http://purl.org/utwente/58404, 2007
  7. Fukuoka S, Tojo M, Hachiya H, Aminaka M, Hasegawa K, Polym. J., 39, 91, 2007
  8. Min C, Yuezhong M, Yixin L, Catal. Commun., 6, 802, 2005
  9. Fuming M, Zhi P, Guangxing L, Organic Process Research & Development., 8, 372, 2004