Issue
Korean Chemical Engineering Research,
Vol.50, No.4, 690-695, 2012
미세직경 얼음을 이용한 CO2 하이드레이트 제조특성 연구
Study on Characteristic of CO2 Hydrate Formation Using Micro-sized Ice
가스 하이드레이트는 순수한 물이 이루는 격자구조 내에 다양한 가스분자들이 선택적으로 포획되어진 고체상의 화합물로, 최근 이산화탄소를 포집, 수송, 저장 하는 CCS (Carbon Capture and Storage)기술에 이를 응용하려는 연구가 활발히 진행되고 있다. 가스 하이드레이트를 적용한 CCS 기술의 핵심은 효과적으로 CO2 하이드레이트를 제조하는 기법의 개발이며, 본 연구에서는 초음파 노즐을 이용하여 수십 나노미터 직경의 미세수적을 통해 고속의 CO2 하이드레이트 제조기술 개발하였고, 이 과정의 특성을 파악해 보았다. 주파수 2.4 MHz의 초음파 노즐을 이용하여 미세직경의 수적을 분무하고 이송가스(carrier gas)로 CO2를 적용, 미세 수적과 CO2가 동시에 급속 냉각되는 저온 반응기에 도입 되어 다공질 얼음입자가 직접 평균 10.7 μm 직경의 CO2 하이드레이트로 생성되는 연속공정을 개발하였다. 미세직경 얼음입자를 시작물로 하여 정압조건에서 CO2 하이드레이트가 생성되도록 하며 가스포집량을 측정, 그의 가스 포집속도를 알아본 결과, 미세직경이며 동시에 다공 얼음이 제공하는 높은 기-고 접촉면적으로 인해 가스 하이드레이트 생성에 매우 적합한 것을 알 수 있었으며, 제조된 CO2 하이드레이트의 자기보존효과(self-preservation effect)를 실험으로 확인함으로서 CO2 가스의 수송에도 이용 가능함을 알 수 있었다.
Gas hydrate is an inclusion compound consisting of water and low molecular weight gases, which are incorporated into the lattice structure of water. Owing to its promising aspect to application technologies, gas hydrate has been widely studied recently, especially CO2 hydrate for the CCS (Carbon Capture and Storage) issue. The key point of CO2 hydrate technology for the CCS is how to produce gas hydrate in an efficient and economic way. In this study, we have tried to study the characteristic of gas hydrate formation using micro-sized ice through an ultrasonic nozzle which generate 2.4 MHz frequency wave. CO2 as a carrier gas brings micro-sized mist into low-temperature reactor, where the mist and carrier gas forms CO2 hydrate under -55 ℃ and atmospheric pressure condition and some part of the mist also remains unreacted micro-sized ice. Formed gas hydrate was average 10.7 of diameter at average. The starting ice particle was set to constant pressure to form CO2 hydrate and the consumed amount of CO2 gas was simultaneously measured to calculate the conversion of ice into gas hydrate. Results showed that the gas hydrate formation was highly suitable because of its extremely high gas-solid contact area, and the formation rate was also very high. Self-preservation effect of CO2 hydrate was confirmed by the measurement of CO2 hydrate powder at normal and at pressed state, which resulted that this kind of gas storage and transport could be feasible using CO2 hydrate formation.
[References]
  1. Lee H, Lee CS, Kang JM, HWAHAK KONGHAK, 41(2), 135, 2003
  2. Hendriks CA, Blok K, Energ. Convers. Manage., 33(5-8), 387, 1992
  3. Farla JCM, Hendriks CA, Blok K, Energ. Convers. Manage., 29(6-9), 827, 1995
  4. Yeon SH, Sea B, Park YI, Lee KH, HWAHAK KONGHAK, 39(6), 709, 2001
  5. Yoon JH, Lee H, AIChE J., 43(7), 1884, 1997
  6. Seo Y, Lee H, Environ. Sci. Technol., 35(16), 3386, 2001
  7. Kang SP, Lee H, Environ. Sci. Technol., 34(30), 4397, 2000
  8. Shindo Y, Fujioka Y, Komiyama H, Int. J.Chem. Kinet., 27(11), 1089, 1995
  9. Robert BB, Richard KD, Energ. Convers. Manage., 37(6-8), 1079, 1996
  10. Holloway S, Energ. Convers. Manage., 38, 241, 1997
  11. Linga P, Kumar R, Lee JD, Ripmeester JA, Englezos P, Int. J.Greenh. Gas Con., 4(4), 630, 2010
  12. Gudmunsson JS, Parlaktuna M, Khokhar AA, SPE Production and Engineering., 69, 1994
  13. Shimada W, Takeya S, Kamata Y, Uchida T, Nagao J, Ebinuma T, Narita H, AAPG Bull., 109(12), 5802, 2005
  14. Kuhs WF, Genov G, Satykova DK, Hansen T, Phys. Chem. Chem. Phys., 6(21), 4917, 2004
  15. Robert CR, John MP, Bruce EP, The Properties of Gases & Liquids, 4th edition, McGraw-Hill, 1988