Issue
Korean Chemical Engineering Research,
Vol.50, No.4, 654-658, 2012
연속공정에서 고체흡수제의 입자분석을 통한 재생반응기 주입 수분량에 따른 CO2 회수효율 영향 분석
Analysis of CO2 Capture Efficiency in Relation to the Inlet Moisture Content of the Regenerator in the Continuous Process by using Sorbent Analysis
본 연구에서는 두 개의 기포유동층반응기로 구성된 연속공정에서 고체 흡수제의 입자분석을 이용하여 재생반응기 유동화 기체로 사용된 수분 주입량에 따른 H2O 전처리 효과에 대해 규명하였다. 또한 재생반응기의 고체 배출 구조를 underflow 형태에서 overflow 형태로 수정하여 CO2 회수효율을 비교 분석하였다. 재생반응기의 유동화 기체로 사용된 수분의 주입량에 따른 고체흡수제의 전처리 효과를 알아보기 위하여 각각의 조업변수에서 포집된 고체입자를 XRD(X-ray Diffraction), SEM (Scanning Electron Microscope), TGA 분석을 수행하였다. XRD 분석을 이용한 결과 재생반응기의 유동화 기체로 주입된 수분에 의해 K2CO3·1.5H2O의 입자구조가 형성됨을 확인하였으며 TGA 분석에서는 재생반응기로 주입된 수분량에 따라 K2CO3·1.5H2O의 입자구조가 증가하는 경향성을 나타냈다. 재생반응기 내부에서 형 성된 K2CO3·1.5H2O의 입자구조는 흡수반응 시 CO2와의 반응성을 증가시켜 CO2 회수효율이 향상되는 전처리 효과를 나타내었다. 또한 재생반응기 고체 배출 구조를 underflow 형태에서 overflow 형태로 수정하여 CO2 회수효율을 비교분석한 결과 약 3~8% 증가함을 확인하였다.
In this study, CO2 capture efficiency in relation to the inlet moisture content of the regenerator was investigated using potassium-based sorbents in the continuous process composed of two bubbling fluidized-bed reactors, where solid outlet configuration in the regenerator was converted from underflow to overflow. XRD (X-ray Diffraction), SEM (Scanning Electron Microscope) and TGA were performed to find out the effect of water pre-treatment according to inlet moisture content in the regenerator. The K2CO3·1.5H2O structure of solid sorbents has been increased as inlet moisture content of the regenerator increased. As a result, the CO2 capture efficiency increased as the K2CO3·1.5H2O structure of solid sorbents increased since the reactivity of the sorbents has been improved by that structure generated by the water pre-treatment. And CO2 capture efficiency increased about 3~8% after sorbent outlet configuration of the regenerator was changed underflow to overflow.
[References]
  1. Yi CK, Korean Chem. Eng. Res., 48(2), 140, 2010
  2. Yi CK, Korean Ind. Chem. News, 12(1), 30, 2009
  3. Metz,B, “IPCC Special Report on Carbon Dioxide Capture and Storage,” Cambridge University Press, New York, 2005
  4. Yi CK, Hong SW, Jo SH, Son JE, Choi JH, Korean Chem. Eng. Res., 43(2), 294, 2005
  5. Kunii D, Levenspiel O, Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Boston, U.S.A, 1991
  6. Kim KC, Kim KY, Park YC, Jo SH, Ryu HJ, Yi CK, Korean Chem. Eng. Res., 48(4), 499, 2010
  7. Ryu HJ, Park JH, Kim HK, Park MH, Korean Chem. Eng. Res., 46(6), 1057, 2008
  8. Hayashi H, Taniuchi J, Furuyashiki N, Sugiyama S, Hirano S, Shigemoto N, Nonaka T, Ind. Eng. Chem. Res., 37(1), 185, 1998
  9. Lee SC, Choi BY, Ryu CK, Ahn YS, Lee TJ, Kim JC, Korean J. Chem. Eng., 23(3), 374, 2006
  10. Lee SC, Chae HJ, Choi BY, Jung SY, Ryu CY, Park JJ, Baek JI, Ryu CK, Kim JC, Korean J. Chem. Eng., 28(2), 480, 2011
  11. Seo Y, Moon YS, Jo SH, Ryu CK, Yi CK, Korean Chem. Eng. Res., 43(4), 537, 2005
  12. Seo Y, Jo SH, Ryu HJ, Bae DH, Ryu CK, Yi CK, Korean J. Chem. Eng., 24(3), 457, 2007
  13. Seo YW, Jo SH, Ryu CK, Yi CK, Chemosphere., 69, 712, 2007
  14. Kim KC, Park YC, Jo SH, Yi CK, Korean J. Chem. Eng., 28(10), 1986, 2011
  15. Park YC, Kim KC, Lee SY, Jo SH, Yi CK, “ Effects of Steam on the Regeneration of Potassium-Based Solid Sorbents in Carbon Dioxide Capture System Composed of Two-interconnected Bubbling Beds,” Ascon, Japan, 2008
  16. Lee SC, Chae HJ, Choi BY, Jung SY, Ryu CY, Park JJ, Baek JI, Ryu CK, Kim JC, Korean J. Chem. Eng., 28(2), 480, 2011
  17. Lee SC, Kim JC, Catal. Surv. Asia., 11, 171, 2007