Issue
Korean Chemical Engineering Research,
Vol.50, No.3, 442-448, 2012
폴리프로필렌 수지 이용 연료유 생성을 위한 열분해 반응에서 제올라이트계 촉매의 영향
The Effects of Zeolite-Type Catalysts on the Pyrolysis Reaction of PP to Produce Fuel-oil
폐 플라스틱을 이용한 연료유 생산 공정을 위한 폴리프로필렌(PP) 수지에 대한 열분해 반응 실험을 하였다. 질소 분위기에서 상온에서 650 ℃ 까지의 비등온 조건에서의 열분석기와 420 ℃ 등온에서의 Pyrolyser GC-mass 분석기, 420 ℃의 배치형 반응기에서 무촉매반응과 천연제올라이트, 폐 FCC 촉매, ZSM-5 등의 제올라이트 계 촉매를 사용한 열분해 실험이 행하여졌다. TGA 실험에서 PP 수지의 열분해반응은 330 ℃ 부근에서 시작되어, 497 ℃에서 완결되었다. 촉매반응에서 제올라이트 계열 촉매는 폐 FCC 촉매> 천연제올라이트> ZSM-5> PP의 순으로 열분해 반응속도를 높이는데 유효하였다. 열분해가 완료되는 온도도 폐 FCC 촉매 첨가 시 가장 낮게 나타났다. PY-G.C. mass 실험에서 PP 수지 만의 경우에서보다 촉매가 첨가됨에 따라 탄소 수가 낮은 생성물이 생성되는 것을 알 수 있었다. ZSM-5 촉매나 폐FCC 촉매 첨가 시 특히 낮은 탄소 수의 생성물이 많이 생성되었다. 회분식 반응기에서 초기 오일생성율은 폐 FCC 촉매 첨가시 가장 높지만, 최종 오일전환율은 천연제올라이트 첨가 시가 폐 FCC 촉매 첨가 시보다 2% 정도 높았다. 탄소분석에서도 폐 FCC 촉매 첨가가 경유 성분이 주성분으로 요구되는 연료유 제조에 우수 하였다.
The effects of zeolite-type catalysts addition on the thermal decomposition of the PP resin have been studied in a thermal analyzer, a Pyrolyser GC-mass, and a small batch reactor. The zeolite type catalysts tested were natural zeolite, used FCC catalyst, and ZSM-5. As the results of TGA experiments, the pyrolysis starting temperature for PP varied in the range of 330~360 ℃ according to the heating rate. Addition of the zeolite type catalysts in the PP resin increased the pyrolysis rate in the order of used FCC catalyst> natural zeolite> ZSM-5 > PP resin. Adding the used FCC catalyst in the PP reduced most effectively the pyrolysis finishing temperature. In the PY-G.C. mass experiments, addition of zeolite type catalysts decreased the molecular weight of pyrolyzed product. In the batch system experiments, the mixing of used FCC catalyst enhanced best the initial yield of fuel oil, but the final yield of fuel oil was 2% higher in the case of mixing of natural zeolite. Also in the carbon number analysis, used FCC catalyst was the most useful one in this experiments for fuel oil.
[References]
  1. 2010 Wastes Industry Overview, Korea Industry Information center, 46, 2010
  2. Vasile C, Pakdel H, Mihai B, Onu P, Darie H, Ciocalteu S, J. Anal. Appl. Pyrolysis., 57, 287, 2001
  3. Pinto F, Costa P, Gulyurtlu I, Cabrita I, J. Anal. Appl. Pyrolysis., 51, 39, 1999
  4. Ucar S, Karagoz S, Karayildirim T, Yanik J, Polym. Degrad.Stabil., 75, 161, 2002
  5. Ishihara Y, Nanbu H, Saido K, Ikemura T, Takesue T, Kuroki T, Fuel., 72, 1115, 1993
  6. Park DW, “Catalysts for Pyrolysis of Waste Plastic and Pyrolysis Method,” Korea Patent, 2000-0043100, 2000
  7. Lee KH, Shin DH, J. Korea Society of Waste Management., 21(6), 646, 2004
  8. Kim DC, Woo JK, J. of KSEE., 26(11), 1232, 2004
  9. Kim DC, Woo JK, Nho NS, J. Korea Society of Waste Management., 22(8), 765, 2005
  10. Bak YC, Choi JH, Cho TH, Korean Chem. Eng. Res., 47(3), 303, 2009
  11. Marcilla A, Gomez A, Reyes-Labarta JA, Giner A, Polym. Degrad. Stabil., 80, 233, 2003
  12. Sakata Y, Uddin MA, Muto A, J. Anal. Appl. Pyrolysis., 51, 135, 1999
  13. Gobin K, Manos G, Polym. Degrad. Stabil., 83, 267, 2004
  14. Hwang EY, Choi JK, Kim KH, Park DW, Woo HC, Korean J. Chem. Eng., 15(4), 434, 1998
  15. Onu P, Vasile C, Ciocilten S, Iojoju E, Darie H, J. Anal. Appl. Pyrolysis., 49, 145, 1999