Issue
Korean Chemical Engineering Research,
Vol.50, No.3, 417-420, 2012
Toluene diisocyanate(TDI) 합성을 위한 Pd/SiO2 촉매상 직접 카보닐화반응에서의 피리딘 첨가효과
Effect of Pyridine on Toluene Diisocyanate (TDI) Synthesis Using Direct Carbonylation over Pd/SiO2
본 연구는 Pd/SiO2 촉매를 이용하여 2,4-dinitrotoluene(2,4-DNT)을 2,4-toluene diisocyanate(2,4-TDI)로 환원시키는 반응에 관한 연구이다. 반응 조건은 200 ℃에서, 일산화탄소를 주입하여 100 bar에서 실험을 진행하였으며, 피리딘이 TDI의 수율에 미치는 영향에 대해 연구 하였다. 반응 실험 결과 피리딘을 넣지 않은 경우 TDI는 생성되지 않았고, 피리딘을 첨가하면 TDI가 생성되었다. 직접 카보닐화를 이용한 균질계상에서의 TDI 합성 연구 결과에 의하면 팔라듐과 피리딘의 착이온이 형성되어 촉매작용을 하는 것으로 알려져 있다. 피리딘을 첨가하였을 경우 TDI가 합성되는 것이 팔라듐 용출에 의한 것인지 확인하기 위해 ICP-AES 분석을 시행하였다. 20 vol% 피리딘을 첨가한 반응에서 반응 후 촉매의 팔라듐 함량이 반응 전에 비해 52% 감소하였다. 이러한 결과는 피리딘을 첨가한 반응실험에서 용출된 팔라듐이 피리딘과 착이온을 형성하는 과정을 거쳐 TDI가 생성되는 것으로 설명될 수 있다.
This study is about reduction reaction making 2, 4-dinitrotoluene (2, 4-DNT) to 2, 4-toluene diisocyanate (2,4-TDI) with Pd/SiO2. Catalytic systems based on Pd/SiO2 at about 200 ℃ and under 100 bars of carbon monoxide. We studied the effect of pyridine on the yield of the TDI. TDI was not created without pyridine, but created with pyridine, at the reaction result. According to research, homogeneous synthesis of TDI with direct carbonylation, palladium and pyridine complexion is known to catalyze. When adding pyridine the reason of TDI synthesis is palladium leaching, ICP-AES was performed to confirm it. As a result, the proportion of Pd loaded in SiO2 was decreased 52% than before, after the reaction by adding 20 vol% pyridine. Generating TDI by adding pyridine might be the effect of the complex ion, which is composed of leached palladium and pyridine.
[References]
  1. Huang Z, Lu S, Yang Z, Guo D, Luo C, Adv. Mater., 197, 1332, 2011
  2. Paul F, Coord. Chem. Rev., 203, 269, 2000
  3. Wolfgang Schneider, Werner Diller, “phosgene”, Ullmann’s Encyclopedia of Industrial Chemistry, DOI: 10.1002/14356007.a19_411, 2000
  4. http://www.opcw.org/about-chemical-weapons/what-is-a-chemical-weapon/
  5. Dai YS, Wang Y, Yao J, Wang QY, Liu LM, Chu W, Wang GY, Catal. Lett., 123(3-4), 307, 2008
  6. Wang XK, Yan SR, Li ZH, Fan KN, Kang MQ, Peng SY, Korean J. Chem. Eng., 21(2), 378, 2004
  7. Gupte SP, Chaudhari RV, J.Mol. Catal., 24, 197, 1984
  8. Mills PL, Chaudhari RV, Catal. Today, 37(4), 367, 1997
  9. Nefedov BK, Manov-Yuvenskii VI, Khoshdurdyev KO, Russ. Chem. Bull., 27(1), 99, 1978
  10. Ragaini F, Dalton Trans., 6251, 2009
  11. Fukuoka S, Fukawa I, Tojo M, Oonishi K, Hachiya H, Aminaka M, Hasegawa K, Komiya K, Catal Surv Asia., 14, 146, 2010
  12. http://en.wikipedia.org/wiki/Toluene_diisocyanate.
  13. http://gestis-en.itrust.de/nxt/gateway.dll/gestis_en/d/017900.xml?f=templates$fn=default-doc.htm$3.0.
  14. Dugas V, Chevalier Y, J. Colloid Interface Sci., 264(2), 354, 2003
  15. Nefedov BK, Manov-Yuvenskii VI, Khoshdurdyev KO, Russ.Chem. Bull., 26(7), 1427, 1977
  16. Ugo R, Psaro R, Pizzotti M, Nardi P, Dossi C, Andreetta A, Capparella G, J. Organomet. Chem., 417, 211, 1991
  17. Manov-Yuvenskii VI, Redoshkin BA, Nefedov BK, Belyaeva GP, Russ. Chem. Bull., 29, 117, 1980
  18. Manov-Yuvenskii VI, Redoshkin BA, Nefedov BK, Belyaeva GP, Russ.Chem. Bull., 30, 455, 1981
  19. Wu DY, Duan S, Ren B, Tian ZQ, J.Raman Spectrosc., 36, 533, 2005