Issue
Korean Chemical Engineering Research,
Vol.50, No.3, 398-402, 2012
Fe2O3/SiO2 촉매 상에서 물과 암모니아가 함께 존재하는 황화수소의 선택적 산화 반응
Selective Oxidation of Hydrogen Sulfide Containing Ammonia and Water Using Fe2O3/SiO2 Catalyst
본 연구는 암모니아와 물이 함께 존재하는 황화수소를 선택적 산화 반응을 통해 원소 황의 형태로 제거하는 기상 촉매 공정의 개발에 관한 것이다. 최적의 촉매를 개발하기 위해 여러 가지 금속산화물에 대한 반응성 실험 결과 Fe2O3/SiO2 촉매가 240~280 ℃의 온도 범위에서 90% 이상의 H2S 전화율과 아주 낮은 SO2 방출을 나타내어 실제 공정에 적용하기에 가장 적합하였다. Fe2O3/SiO2 촉매 상에서 황화수소의 선택적 산화 반응에 대한 메커니즘 규명을 위하여 반응 온도, O2/H2S 몰 비, 암모니아와 수증기의 분압이 촉매 활성에 미치는 영향에 관하여 고찰하였다. 전화율은 반응 온도가 260 ℃에서 최대값을 보였고, 280 ℃ 이상에서는 전화율과 원소 황의 선택도가 모두 감소하는 경향을 나타내었다. O2/H2S 비가 0.5에서 4로 증가하면 전화율이 증가하였으나 선택도는 크게 감소하였다. 암모니아 분압이 증가하면 전화율이 증가하고 SO2 발생은 감소하였으며 원소 황의 선택도가 증가하였다. 수증기가 함께 존재하면 전화율과 원소황의 선택도는 감소하고, ATS의 선택도가 증가하였다.
The catalytic performance of some metal oxides in the vapor phase selective oxidation of H2S in the stream containing ammonia and water was investigated. Among the catalysts tested Fe2O3/SiO2 was the most promising catalyst for practical application. It showed higher than 90% H2S conversion and very small amount of SO2 emission over a temperature range of 240~280 ℃. The effects of reaction temperature, O2/H2S ratio, amount of ammonia and water vapor on the catalytic activity of Fe2O3/SiO2 were discussed to better understand the reaction mechanism. The H2S conversion showed a maximum at 260 ℃ and it decreased with increasing temperature over 280 ℃. With an increase of O2/H2S ratio from 0.5 to 4, the conversion was slightly increased, but the selectivity to elemental sulfur was remarkably decreased. The increase of ammonia amount favored the conversion and the selectivity to elemental sulfur with a decrease in SO2 production. The presence of water vapor decreased both the activity and the selectivity to sulfur, but increased the ATS selectivity.
[References]
  1. Wiekowska J, Catal. Today., 24, 105, 1995
  2. Lagas JA, Borsboom J, Berben PH, Oli & Gas J., Oct., 10, 68, 1998
  3. Kettner R, Lubcke T, Liermann N, “Process for the Reduction of the Sulfur Content in a Gaseous Stream,” European Patent No. 78690, 1983
  4. Kettner R, Liermann N, Oil & Gas J., Jan., 11, 63, 1988
  5. Terorde RJAM, Van den Brink PJ, Visser LM, Van Dillen AJ, Geus JW, Catal. Today., 17, 217, 1993
  6. Van den Brink PJ, Scholten A, Van Dillen AJ, Geus JW, Stud. Surf. Sci.Catal., 68, 515, 1991
  7. Chun SW, “Removal of Hydrogen Sulfide by Selective Catalytic Oxidation,” Ph. D. Dissertation, Pusan Nation University, Busan, Korea, 1998
  8. Park DW, Chun SW, Park BK, J. Chem. Eng. Jpn., 34(2), 274, 2001
  9. Park DK, Choe YG, Park DW, Woo HC, React. Kinet. Catal. Lett., 74(1), 57, 2001
  10. Hartely EM, Matteson MJ, Ind. Eng. Chem. Fundam., 14, 67, 1975
  11. Hsunling B, Pratim B, Tim CK, Ind. Eng. Chem.Fundam., 31, 88, 1975
  12. Chun SW, Jang JY, Park DW, Woo HC, Chung JS, Appl. Catal. B: Environ., 16(3), 235, 1998