Issue
Korean Chemical Engineering Research,
Vol.49, No.6, 865-868, 2011
하이드로퀴논 크러스레이트를 이용한 배가스 분리 특성 연구
Study on Separation Characteristics of Flue Gas Using Hydroquinone Clathrate Compounds
배가스로부터 이산화탄소의 분리 특성을 파악하기 위해 유기 화합물인 하이드로퀴논을 이용하여 크러스레이트 화합물을 형성하였다. 형성된 크러스레이트 화합물은 고체 NMR 및 라만 분광법을 이용하여 기체의 포집 거동을 확인하였으며, 기체 분리 효율을 계산하기 위하여 원소 분석기를 통한 정량분석도 함께 수행하였다. 분석 결과 배가스에 포함된 이산화탄소는 질소에 비해 동일한 조건에서 크러스레이트 화합물 내로 더 잘 포집되는 것으로 확인되었다. 또한 다양한 압력에서 형성된 시료들을 분석한 결과, 이러한 이산화탄소의 선택적 포집 특성이 매우 낮은 압력에서도 뚜렷한 것으로 확인되어 추가적인 에너지 소모를 적게 하면서도 배가스로부터 이산화탄소를 대규모로 분리/회수하는 것이 가능할 것이라 판단된다. 본 연구에서 얻어진 결과는 향후 배가스에 대한 분리 응용 기술이나 혼합 가스의 선택적 분리와 같은 분야에서 중요한 정보를 제공할 수 있을 것으로 기대된다.
An organic substance, hydroquinone is used to form clathrate compounds in order to identify separation characteristics of carbon dioxide in flue gas. Formed samples were analyzed by means of the solid-state 13C nuclear magnetic resonance (NMR) and Raman spectroscopic methods to examine enclthration behaviors of guest species. In addition, elemnetal analysis was also performed in order to evaluate separation efficiency of CO2 in a quantitative way. Based on the experimental results obtained, CO2 molecules are found to be captured into the clathrate compound more readily than N2 molecules. Moreover, because such preferential enclathration is even more significant at low pressure conditions, CO2 separation/recovery from flue gas can be achieved with minimizing additional energy cost for the technique. Experimental results obtained in this study can provide useful information on separation techniques of flue gas or selective separation of gas mixtures in the future.
[References]
  1. Soon W, Baliunas SL, Robinson AB, Robinson ZW, Clim. Res., 13, 149, 1999
  2. Ida JI, Lin YS, Environ. Sci. Technol., 37, 1999, 2003
  3. Kang SP, Lee H, Environ. Sci. Technol., 34, 4397, 2000
  4. Kim DY, Lee H, J. Am. Chem. Soc., 127(28), 9996, 2005
  5. Seo YT, Lee H, J. Phys. Chem. B, 108(2), 530, 2004
  6. Yoon JH, Kawamura T, Ohtake M, Takeya S, Komai T, Yamamoto Y, Emi H, Kohara M, Tanaka S, Takano O, Uchida K, J. Phys. Chem. B, 110(35), 17595, 2006
  7. Kumar R, Englezos P, Moudrakovski I, Ripmeester JA, AIChE J., 55(6), 1584, 2009
  8. Linga P, Kumar RN, Englezos P, Chem. Eng. Sci., 62(16), 4268, 2007
  9. Ripmeester JA, Chem. Phys.Lett., 74, 536, 1980
  10. Lee JW, Lee Y, Takeya S, Kawamura T, Yamamoto Y, Lee YJ, Yoon JH, J. Phys. Chem.B., 114, 3254, 2010
  11. Kubinyi M, Billes F, Grofcsik A, Keresztury G, J. Mol. Struct., 266, 339, 1992
  12. Uchida T, Takagi A, Kawabata J, Mae S, Hondoh T, Energy Convers. Mgmt., 36, 547, 1995
  13. Musso M, Matthai F, Keutel D, Oehme KL, Pure Appl. Chem., 76, 147, 2004