Issue
Korean Chemical Engineering Research,
Vol.49, No.6, 846-850, 2011
주석-니켈 나노입자 복합체의 리튬 이차전지 음전극 특성
Anode Properties of Sn-Ni Nanoparticle Composites for Rechargeable Lithium Batteries
주석과 니켈 나노입자를 함량별로 혼합하여 습식법으로 리튬 이차전지용 복합체 음전극을 제조하고 그 물성과 전기화학적 특성을 조사하였다. 이 음전극은 초기 방전시 최대 700 mAh g^(-1)의 우수한 방전용량을 나타내었지만 사이클 특성은 심각한 열화를 보였다. 이것은 나노입자간 단순혼합만으로는 전극판의 기공성과 Ni 성분이 충방전에 따르는 Sn 성분의 팽창/수축에 대한 기계적 완충제 역할이 충분하지 않았기 때문이며, 차후 이를 보완하는 나노구조체 Sn-Ni 음전극의 설계와 시험이 필요하다.
Nanocomposite anodes for rechargeable lithium battery are prepared by mixing tin and nickel nanoparticles via wet method and their electrochemical properties are examined. The Sn-Ni nanocomposite anode shows a maximum discharge capacity of 700 mAh g^(-1) at the first cycle but very poor cycle performance. This means that the electrode porosity and the Ni component formed by the simple mixing of nanoparticles no longer play the role of buffering the volume expansion/contraction of Sn component during charge-discharge. To solve the cycle performance problem, a novel nanostructured Sn-Ni anode should be designed and tested.
[References]
  1. Winter M, Besenhard JO, Electrochim. Acta, 45(1-2), 31, 1999
  2. Crosnier O, Brousse T, Devaux X, Fragnaud P, Schleich DM, J. Power Sources, 94(2), 169, 2001
  3. Mukaibo H, Sumi T, Yokoshima T, Momma T, Osaka T, Electrochem. Solid State Lett., 6(10), A218, 2003
  4. Mukaibo H, Momma T, Mohamedi M, Osaka T, J. Electrochem. Soc., 152(3), A560, 2005
  5. Mukaibo H, Momma T, Osaka T, J. Power Sources, 146(1-2), 457, 2005
  6. Hassoun J, Panero S, Scrosati B, J. Power Sources, 160(2), 1336, 2006
  7. Ehrlich GM, Durand C, Chen X, Hugener TA, Spiess F, Suib SL, J. Electrochem. Soc., 147(3), 886, 2000
  8. Lee HY, Jang SW, Lee SM, Lee SJ, Baik HK, J. Power Sources, 112(1), 8, 2002
  9. Amadei I, Panero S, Scrosati B, Cocco G, Schiffini L, J. Power Sources, 143(1-2), 227, 2005
  10. Cheng XQ, Shi PF, J. Alloys Compounds., 391, 241, 2005
  11. Dong QF, Wu CZ, Jin MG, Huang ZC, Zheng MS, You JK, Lin ZG, Solid State Ion., 167(1-2), 49, 2004
  12. Nishikawa K, Dokko K, Kinoshita K, Woo SW, Kanamura K, J. Power Sources, 189(1), 726, 2009
  13. Woo SW, Okada N, Kotobuki M, Sasajima K, Munakata H, Kajihara K, Kanamura K, Electrochim. Acta, 55(27), 8030, 2010
  14. Sivashanmugam A, Kumar TP, Renganathan NG, Gopukumar S, Wohlfahrt-Mehrens M, Garche J, J. Power Sources, 144(1), 197, 2005
  15. Wang J, Raistrick ID, Huggins RA, J. Electrochem. Soc., 133, 457, 1986
  16. Whittingham MS, Dalton Trans., 5424, 2008
  17. Bruce PG, Scrosati B, Tarascon JM, Angew. Chem. Int. Ed., 47, 2930, 2008
  18. Kim MG, Cho J, Adv. Funct. Mater., 19(10), 1497, 2009
  19. Deng D, Kim MG, Lee JY, Cho J, Energy Environ. Sci., 2, 818, 2009
  20. Scrosati B, Garche J, J. Power Sources, 195(9), 2419, 2010
  21. Zhang WJ, J. Power Sources, 196(1), 13, 2011
  22. Liu R, Duay J, Lee SB, Chem. Commun., 47, 1384, 2011