Issue
Korean Chemical Engineering Research,
Vol.49, No.6, 810-815, 2011
분리막 농축수에 포함된 Na를 이용한 저농도 NaOH 용액의 합성
Synthesis of Low Concentration of NaOH Solution using Na+ ion in the Concentrat Water from Membrane Separation Process
역삼투막을 이용한 해수담수화 과정에서 발생하는 농축수 내에는 고농도의 Na+ 이온이 포함되어 있으며, 이를 경제성 있는 NaOH 용액으로 회수하기 위해 전기분해를 적용하였다. 실험실 규모의 전기분해장치를 구성하여 실험조건의 변화에 따른 NaOH 용액의 합성농도를 비교하였다. 이온교환막의 종류 (CIMS 막, Nafion 막), 이온교환막의 전처리 유무, 농축수의 유입 유속(73 mL/min ~ 200 mL/min), 모의 농축수의 농도(1.5 M ~ 5 M), 전류(1.5 A, 2 A) 등의 인자를 변화시켜 전기분해를 수행한 결과, CIMS 막은 Nafion 막에 비하여 NaOH 용액의 합성효율은 뛰어나지만, 장시간 운전 이후에 염소가스에 대한 내구성이 떨어졌다. 또한, 모의 농축수의 Na+ 이온농도와 전류가 높을수록 NaOH 용액의 합성효율은 증가하였으나, 모의 농축수의 유입 유속이 낮을수록 합성효율은 증가하였다.
Concentrated water discharged from seawater desalination process contains a high concentration of Na+ion. Electrolysis was applied to synthesize NaOH solution from the highly concentrated NaCl solution. The effect of various operating parameters of composited laboratory-scale chlor-alkali (CA) membrane cell was investigated. The operating parameters such as membrane types (CIMS and Nafion membranes), pretreatment of the membrane, flow rate (73 mL/min~200 mL/min), initial Na+ ion concentration (1.5 M, 3M and 5 M) and current (1.5A and 2A) were evaluated. It was observed that synthesis efficiency of NaOH solution with CIMS membrane was higher than that with Nafion membrane, but the durability of CIMS membrane on Cl2 gas was poor. The synthesis efficiency of NaOH solution increased with increasing initial Na+ ion concentration and current, while the efficiency decreased with increasing flow rate using Nafion membrane.
[References]
  1. Khawaji AD, Kutubkhanah IK, Wie JM, Desalination, 221(1-3), 47, 2008
  2. Jeppesen T, Shu L, Keir G, Jegatheedan V, J. Cleaner Production., 17, 703, 2009
  3. Hamzaoui AH, M'nif A, Hammi H, Rokbani R, Desalination, 158(1-3), 221, 2003
  4. Mohammadesmaeili F, Badr MK, Abbaszadegan M, Fox P, Water Res., 44, 6021, 2010
  5. Martinetti CR, Childress AE, Cath TY, J. Membr. Sci., 331(1-2), 31, 2009
  6. Kiros Y, Pirjamali M, Bursell M, Electrochim. Acta, 51(16), 3346, 2006
  7. Madaeni SS, Kazemi V, Sep. Purif. Technol., 61(1), 68, 2008
  8. Hocking MB, Handbook of Chemical Technology and Pollution Control, 3rd ed., Oxford: Academic, 221, 2005
  9. Jalali AA, Mohammadi F, Ashrafizadeh SN, Desalination, 237(1-3), 126, 2009
  10. Desai AS, Chougule VD, Patil SS, Sriram M, J. Chromatogr Chromatogr.A., 841, 55, 1999
  11. Savari S, Sachdeva S, Kumar A, J. Membr. Sci., 246, 310, 2008
  12. Xu TW, J. Membr. Sci., 263(1-2), 1, 2005
  13. Almeida SH, Kawano Y, J. Therm. Anal. Calorim., 58, 569, 1999
  14. Buck RP, Mundt C, Electrochim. Acta, 44(12), 1999, 1999
  15. Mohammadi T, Razmi A, Sadrzadeh M, Desalination, 167(1-3), 379, 2004