Issue
Korean Chemical Engineering Research,
Vol.49, No.6, 752-757, 2011
수열 합성법에 의한 Zinc Oxide의 제조 및 Tartrazine 분해 특성
Preparation of Zinc Oxide by Hydrothermal Precipitation and Degradation of Tartrazine
암모니아수와 zinc acetate로부터 액상 수열합성법에 의한 ZnO의 제조에 있어 반응온도, 반응물의 농도와 혼합방법, 용액의 pH 등 반응조건에 따른 ZnO 입자의 형상과 입자분포 등 제조특성을 고찰하고, UV 조사하에 tartrazine의 광분해를 측정하여 합성된 ZnO의 광촉매로서의 성능을 확인하였다. 반응용액의 pH가 높을수록 ZnO 입자의 평균 크기는 증가하였고, zinc acetate의 농도가 증가할수록 그리고 반응온도가 증가할수록 입자의 크기는 감소하였다. 반응용액의 혼합시 암모니아수 주입 후에 zinc acetate를 첨가하였을 경우 더 작은 입자를 얻을 수 있었다. 최소 크기의 ZnO 입자의 생성을 위한 최적 조건은 용액의 pH 11.2, zinc acetate의 농도 0.6 M, 반응온도 90℃ 였으며, 입자 평균크기는 3.133 μm이었다. 합성온도 80 ℃, zinc acetate 농도 1.0M 및 반응용액의 pH 11.2의 조건에서 합성된 ZnO에 의한 tartrazine의 광촉매 분해는 분해시간 60분에서 약 97%의 분해율을 보였다.
The effects of reaction temperature, reactant concentration, pH of solution and mixing order of reactants on the particle shape and size distribution of zinc oxide were investigated in the preparation of zinc oxide from ammonium hydroxide and zinc acetate by the method of aqueous hydrothermal precipitation method, and the photocatalytic ability of zinc oxide synthesized was measured from the degradation of tartrazine under UV irradiation. The average particle size was increased with pH of solution but decreased with zinc acetate concentration and reaction temperature. The optimum condition for the synthesis of minimum sized zinc oxide was pH 11.2, concentration of zinc acetate 0.6 M and reaction temperature 90 ℃, and its average particle size was 3.133 μm. 97% of tartrazine was degraded by zinc oxide in sixty minutes.
[References]
  1. Ju CS, Lee MG, Hong SS, HWAHAK KONGHAK, 35(5), 655, 1997
  2. Jose J, Abdul Khadar M, Nanostruct. Master., 11(8), 1091, 1999
  3. Jose J,Abdul Khadar M, Master.Sci. Eng. A., 304-306, 810-813, 2001
  4. Jose J, Abdul Khadar M, Acta Mater., 49, 729, 2001
  5. Morales AM, Lieber CM, Science, 279(5348), 208, 1998
  6. Han WQ, Fan SS, Li QQ, Hu YD, Science, 277(5330), 1287, 1997
  7. Li JY, Chen XL, Qiao ZY, Cao YG, Lan YC, J. Cryst. Growth, 213(3-4), 408, 2000
  8. Yang P, Lieber CM, J. Master. Res., 12(11), 2981, 1997
  9. Pan ZW, Dai ZR, Wang ZL, Science, 291(5510), 1947, 2001
  10. Huang MH, Wu YY, Feick H, Tran N, Weber E, Yang PD, Adv. Mater., 13(2), 113, 2001
  11. Yoo BK, Park YW, Kang CY, Kim JS, Yoon SY, J. Korean Inst.Elec. Electrn. Mat. Eng., 22(1), 884, 2009
  12. Kim KB, Kim CI, Jeong YH, Lee YJ, Paik JH, J. Korean Inst.Elec. Electrn. Mat. Eng., 23(3), 222, 2010
  13. Ju CS, Lee HG, Jeong YO, Chyn JK, Hwang DK, HWAHAK KONGHAK, 33(4), 437, 1995
  14. Jeong KS, J. Environmental Sciences., 12(3), 319, 2003
  15. Jeong KS, J. Environmental Sciences., 15(12), 1155, 2006
  16. Takada T, Bull. Inst. Chem. Res., 56(5), 1978
  17. Kim BC, Park ZH, Shin HS, Lee SK, Lee BK, J. Korean Ceramic Society., 35, 107, 1998
  18. Jeong KS, Na SE, Lee HS, Korean Soc. Coll. Edu., 5(2), 183, 2004