Issue
Korean Chemical Engineering Research,
Vol.49, No.6, 732-738, 2011
고압반응 하에서 요소와 메탄올을 사용한 메틸카바메이트와 디메틸카보네이트 제조에 관한 금속산화물 촉매 및 이온성액체의 영향
Effect of Metal Oxide Catalysts and Ionic Liquids on the Synthesis of Methyl Carbamate and Dimethyl Carbonate from Urea and Methanol under High Pressure Reaction System
고압 반응시스템에서 요소와 메탄올로부터 메틸카바메이트(MC) 및 디메틸카보네이트(DMC)의 제조에 관한 금속 산화물촉매와 이온성액체의 영향을 고찰하였다. 고립계에서 요소와 메탄올로부터 MC 수율은 촉매를 사용하지 않고도 150 ℃ 이상의 반응온도에서 거의 100%를 나타내었으나, DMC 수율은 반응온도와 무관하게 1.5% 이하로 매우 낮은 값을 나타내었다. 또한 MC와 메탄올로부터 DMC 수율은 ZnCl2 촉매를 사용한 경우에 가장 우수하였으며, 최적조건에서 16.3% 정도를 나타내었다. DMC 수율은 반연속식 실험에서 나노 크기의 촉매와 이온성액체를 함께 적용한 경우에 좀 더 향상되었다.
Effect of metal oxide catalysts and ionic liquids on the synthesis of methyl carbamate(MC) and dimethyl carbonate (DMC) from urea and methanol was investigated in a high pressure reaction system. In closed system, MC yield from urea and methanol reached almost 100% at reaction temperature over 150 ℃ without catalyst, whereas DMC yield of 1.5% under was obtained irrespective of catalysts used. In DMC synthesis from MC and methanol, ZnCl2 showed the highest catalytic activity and led to the DMC yield of 16.3% under optimal conditions. Furthermore, DMC yield can be enhanced by the simultaneous application of ionic liquids with nano-sized catalysts in semi-continuous reaction system.
[References]
  1. Sun JJ, Yang BL, Lin HY, Chem. Eng. Technol., 27(4), 435, 2004
  2. Keller N, Rebmann G, Keller V, J. Mol. Catal. A-Chem., 317(1-2), 1, 2010
  3. Kim DW, Kim DK, Kim CW, Koh JC, Park DW, Korean Chem. Eng. Res., 48(3), 332, 2010
  4. Kim KH, Kim DW, Kim CW, Koh JC, Park DW, Korean J. Chem. Eng., 27(5), 1441, 2010
  5. Lin HY, Yang BL, Sun JJ, Wang XP, Wang DP, Chem. Eng. J., 103(1-3), 21, 2004
  6. Selva M, Perosa A, Green Chem., 10, 457, 2008
  7. Lee YS, Koh JC, Kim BS, Kim KJ, Koo KK, J. Korean Ind. Eng. Chem., 14(7), 1, 2003
  8. Sakakura T, Kohno K, Chem. Commun., 1312, 2009
  9. Delledonne D, Rivetti F, Romano U, Appl. Catal. A: Gen., 221(1-2), 241, 2001
  10. Wang MH, Wang H, Zhao N, Wei W, Sun YH, Ind. Eng. Chem. Res., 46(9), 2683, 2007
  11. Zhao WB, Wang F, Peng WC, Zhao N, Li JP, Xiao FK, Wei W, Sun YH, Ind. Eng. Chem. Res., 47(16), 5913, 2008
  12. Wang X, Yang B, Wang D, Zhai X, Chem. Eng. J., 122, 1520, 2006
  13. Kim DW, Kim CW, Koh JC, Park DW, J. Ind. Eng. Chem., 16(3), 474, 2010
  14. Dharman MM, Ju HY, Shim HL, Lee MK, Kim YH, Park DW, J. Mol. Catal. A-Chem., 303(1-2), 96, 2009
  15. Nockmann P, Thijs B, Pittois S, Thoen J, Glorieux C, Hecke KV, Meervelt LV, Kirchner B, Binnemans K, J. Phys. Chem. B., 110, 978, 2006
  16. Kim CU, Kim YS, Chae HJ, Jeong KE, Jeong SY, Jun KW, Lee KY, Korean J. Chem. Eng., 27, 777, 2009
  17. Li Z, Shkilnyy A, Taubert A, Crystal Growth & Design., 8(12), 4526, 2008