Issue
Korean Chemical Engineering Research,
Vol.49, No.6, 715-719, 2011
La0.7Sr0.3Cr1-xNixO3-δ Perovskite 촉매의 프로판 수증기 개질 반응에서의 특성 연구
Study of Catalytic Performance of La0.7Sr0.3Cr1-xNixO3 Perovskite for Steam Reforming of Propane
LaCrO3를 기본으로 하는 perovskite형 재료인 La0.7Sr0.3Cr1-xNixO3(0.1 ≤ x ≤ 0.5)를 citric acid와 EDTA를 이용한 졸-겔법(sol-gel method)으로 합성하였다. 제조한 촉매의 특성분석은 BET, XRD, SEM, H2-TPR, EA 그리고 TEM을 이용하였고, 프로판 수증기 개질 반응을 통하여 촉매 활성을 평가하였다. Perovskite 산화물의 A-site에는 Sr을 30 ml% 고정치환하고, B-site에 Ni 치환양을 증가시키면서 프로판 수증기 개질 반응 실험을 수행한 결과 Ni 치환양과 S/C의 비(steam to carbon ratio)가 증가할수록 프로판 전환율과 수소 수율이 향상되었다. La0.7Sr0.3Cr0.5Ni0.5O3(LSCN-0.5)촉매가 S/C의 비가 1.7이고, 800 ℃의 반응온도 조건에서 100%의 프로판 전환율과 95.9%의 높은 수소 수율을 나타내어 가장 좋은 촉매 활성을 보였다. 반응 후의 촉매에서는 filamentous cabon형태의 탄소 침적형태가 나타나며, Ni 치환양이 증가할수록 침적되는 탄소의 양이 증가하는 것을 확인하였다.
The La0.7Sr0.3Cr1-xNixO3(LSCN-x) perovskites were prepared by citric acid and EDTA using a sol-gel method. The LSCN-x was characterized by BET, XRD, SEM, H2-TPR, EA and TEM. The catalytic performance of LSCN-x catalysts in steam reforming of propane in the temperature range 600~800℃ was investigated. Propane conversion and hydrogen yield increased with an increase in the amount of added Ni up to x=0.5 in the B-site, denoted as LSCN-0.5, under S/C=1 and S/C=1.7 reaction conditions. The LSCN-0.5 catalyst exhibited the best performance under Ni-substitution of which propane conversion and hydrogen yield was 100%, 95.9% at 800 ℃ in the S/C=1.7 condition, respectively. The morphology of carbon deposited on the catalysts after reaction exhibited filamentous carbon and amount of carbon deposited on the catalysts after reaction increased with an increase in the amount of added Ni.
[References]
  1. Ming QM, Healey T, Allen L, Irving P, Catal. Today, 77(1-2), 51, 2002
  2. Kikuchi R, Iwasa Y, Takeguchi T, Eguchi K, Appl. Catal. A: Gen., 281(1-2), 61, 2005
  3. Avci AK, Trimm DL, Onsan ZI, Chem. Eng. J., 90(1-2), 77, 2002
  4. Kolios G, Frauhammer J, Eigenberger G, Chem. Eng. Sci., 55(24), 5945, 2000
  5. Takenaka S, Orita Y, Umebayashi H, Matsune H, Kishida M, Appl. Catal. A: Gen., 351(2), 189, 2008
  6. Shiraga M, Li DL, Atake I, Shishido T, Oumi Y, Sano T, Takehira K, Appl. Catal. A: Gen., 318, 143, 2007
  7. Urasaki K, Tokunaga K, Sekine Y, Matsukata M, Kikuchi E, Catal. Commun., 9(5), 600, 2008
  8. Urasaki K, Sekine Y, Kawabe S, Kikuchi E, Matsukata M, Appl. Catal. A: Gen., 286(1), 23, 2005
  9. Gallego GS, Mondragon F, Barrault J, Tatibouet JM, Batiot-Dupeyrat C, Appl. Catal. A: Gen., 311, 164, 2006
  10. Mawdsley JR, Krause TR, Appl. Catal. A: Gen., 334(1-2), 311, 2008
  11. Lima SM, Assaf JM, Pena MA, Fierro JLG, Appl. Catal. A: Gen., 311, 94, 2006
  12. Valderrama G, Goldwasser MR, de Navarro CU, Tatibouet JM, Barrault J, Batiot-Dupeyrat C, Martinez F, Catal.Today., 107, 785, 2005
  13. Sauvet AL, Irvine JTS, Solid State Ion., 167(1-2), 1, 2004
  14. Erri P, Dinka P, Varma A, Chem. Eng. Sci., 61(16), 5328, 2006
  15. Guo J, Lou H, Zhu Y, Zheng X, Mater. Lett., 57(28), 4450, 2003
  16. Valderrama G, Kiennemann A, Goldwasser MR, Catal. Today, 133, 142, 2008
  17. Sfeir J, Buffat PA, Mockli P, Xanthopoulos N, Vasquez R, Mathieu HJ, Van herle J, Thampi KR, J. Catal., 202(2), 229, 2001
  18. Boukamp BA, Nat. Mat., 2(5), 294, 2003
  19. Moon JW, Lim YH, Oh YK, Lee MJ, Choi BH, Hwang HJ, J. Korean Ceram. Soc., 42(12), 800, 2005
  20. Yang YJ, Wen TL, Tu HY, Wang DQ, Yang JH, Solid State Ion., 135(1-4), 475, 2000
  21. Mori H, Hiei Y, Sammes NM, Solid State Ion., 135(1-4), 743, 2000
  22. Mori M, Hiei Y, Sammes NM, Solid State Ion., 123(1-4), 103, 1999
  23. Barison S, Battagliarin M, Daolio S, Fabrizio M, Miorin E, Antonucci PL, Candamano S, Modafferi V, Bauer EM, Bellitto C, Righini G, Solid State Ion., 177(39-40), 3473, 2007
  24. Pecchi G, Reyes P, Zamora R, Cadus LE, Fierro JLG, J. Solid State Chem., 181(4), 905, 2008
  25. Snoeck JW, Froment GF, Fowles M, J. Catal., 169(1), 240, 1997