Issue
Korean Chemical Engineering Research,
Vol.49, No.6, 688-696, 2011
수소생산기술현황
Hydrogen Production Technology
수소는 에너지를 방출하는 과정에서 부산물로 물만 배출하기 때문에 지속가능한 청정에너지원 중의 하나이다. 현재 세계적으로 사용되는 수소는 대부분 화석연료의 개질에 의해 생산되고 있으며 1 kg 수소를 생산하는 과정에서 7 kg 이상의 이산화탄소를 배출하고 있다. 수소를 생산하는 과정에서 투입되는 에너지와 자원이 지속가능하고 재생 가능해야 수소를 청정에너지원이라 할 수 있다. 바이오매스는 화석연료를 대체할 수 있는 에너지원중의 하나인데, 그 이유는 바이오매스로부터 수소를 생산할 수 있으며 수소생산과정에서 발생하는 이산화탄소는 바이오매스 생산과정에서 소비되기 때문에 이론적으로 이산화탄소를 발생시키지 않는 에너지원이다. 태양에너지와 물로부터 수소를 생산하는 기술은 지구상에 널려있는 자연에너지와 물을 사용하기 때문에 인류가 직면한 에너지와 환경문제를 해결하기 위한 가장 이상적인 기술 중의 하나이다.
Hydrogen is one of the few long-term sustainable clean energy carriers, emitting only water as by-products during its combustion or oxidation. The use of fossil fuels to produce hydrogen makes large amount of carbon dioxide (>7 kg CO2/kg H2) during the reforming processes. Hydrogen production can be environmentally benign only if the energy and the resource to make hydrogen is sustainable and renewable. Biomass is an attractive alternative to fossil fuels for carbon dioxide because of the hydrogen can be produced by conversion of the biomass and the carbon dioxide formed during hydrogen production is consumed by biomass generation process. Hydrogen production using solar energy also attracts great attention because of the potential to use abundance natural energy and water.
[References]
  1. Ball M, Wietschel M, Int. J. Hydrogen Energy., 34, 615, 2009
  2. Crabtree R (Ed.), Energy Production and Storage: Inorganic Chemical Strategies for a Warming World, Wiley, 3-20, 2010
  3. Melis A, Plant Science., 177, 272, 2009
  4. McConnell I, Li G, Brudvig GW, Chem. Biol., 17, 434, 2010
  5. Allakhverdiev SI, Thavasi V, Kreslavski VD, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Los DA, Miruto M, Nishihara H, Carpentier R, J. Photochem. Photobio. C: Photochemistry reviews., 11, 87, 2010
  6. Kim J, Korea Institute of Science and Technology Information(KISTI)., Hydrogen production technology trends, 2004
  7. A study on high production technologies and economical estimation of hydrogen fuel, KIER-991417, 12, 1999
  8. Kim SJ, Biological hydrogen production technology-present condition and vision, Sungkyunkwan University, 2005
  9. Park JW, Kim JM, Yih WH, J. Kor. Soc. of Oceanopraphy., 14(1), 63, 2009
  10. Gim BJ, Kim JW, Transactions of the Korean Hydrogen and New Energy Society., 19(4), 322, 2008
  11. Lee J, Yi Y, Uhm S, J. Korean Ind. Eng. Chem., 19(4), 357, 2008
  12. Lee HS, Vermaas WFJ, Rittmann BE, Trends in Biotechnology., 28(5), 262, 2010
  13. Tributsch H, Int. J. Hydrogen Energy., 33, 5911, 2008
  14. Palumbo R, Lede J, Boutin O, Ricart EE, Steinfeld A, Moller S, Weidenkaff A, Fletcher EA, Bielicki J, Chem. Eng. Sci., 53(14), 2503, 1998
  15. Stenfield, A, Int. J. Hydrogen Energy., 27(6), 611, 2002
  16. Kodama T, Kondoh Y, Yamamoto R, Andou H, Sator N, Solar Energy., 78, 623, 2005
  17. Miller JE, Allendorf MD, Diver RB, Evans LR, Siegel NP, Stuecker JN, J. Mater. Sci., 43(14), 4714, 2008
  18. Kodama T, Gokon N, Yamamoto R, Solar Energy., 82, 73, 2008
  19. Kaneko H, Kodama T, Gokon N, Tamaura Y, Lovegrove K, Luzzi A, Solar Energy., 76, 317, 2004
  20. Gokon N, Mizuno T, Nakamuro Y, Kodama T, J. Solar Energy Eng., 011018-1~011018-6, 130(1), 2008
  21. Miller EL, Rocheleau RE, Deng XM, Int. J. Hydrogen Energy., 28, 615, 2003
  22. Xu L, Garland R, Elam C, FY 2006 Annual progress report., 149, 2006
  23. Light S, Electrochemical Society Transactions., 2(28), 1, 2007
  24. Graetzel M, Augustinki J, “Tandem Cell for Water Cleavage by Visible Light,” US 6,936,143 B1, 2005