Issue
Korean Chemical Engineering Research,
Vol.49, No.5, 541-547, 2011
수열합성 조건에 따른 나노로드 클러스터형 MnO2의 상변화와 이를 이용한 LiMn2O4의 리튬이온전지 양전극 특성
Phase Change of Nanorod-Clustered MnO2 by Hydrothermal Reaction Conditions and the Lithium-ion Battery Cathode Properties of LiMn2O4 Prepared from the MnO2
MnSO45H2O와 (NH4)S2O8의 수열반응으로 1차원 나노로드들이 침상으로 클러스터화된 구조의 MnO2를 제조하고 그 모폴로지와 결정성을 분석하였다. 수열반응의 조건에 따라 α-, β-, γ-MnO2 등의 전구체가 제조될 수 있는데, 고농도 반응물 및 높은 수열합성 온도(150 ℃)에서 전기화학적 활성이 우수한 나노로드 클러스터 β-MnO2의 생성을 확인하였다. 또한 리튬화제 LiC3H3O22·H2O의 농도와 열처리 온도를 변화시키면서 MnO2를 리튬화하여 스피넬계 LiMn2O4를 제조하고 리튬이온전지 양전극으로서의 특성을 조사하였다. 결과적으로 나노로드 클러스터형 β-MnO2로부터 고농도 리튬화제와 800 ℃ 열처리를 통해 제조한 LiMn2O4가 정방형 스피넬에 가장 가까운 구조임을 확인하였으며, 120mAh/g의 우수한 초기 방전용량을 나타내었다.
Nanorod-clustered MnO2 precursors with α-, β-, and γ-phases are synthesized by hydrothermal reaction of MnSO45H2O and (NH4)S2O8. The formation of nanorod-clustered β-MnO2 is particularly confirmed under the conditions of high reactant concentration and hydrothermal reaction at 150℃. The spinel LiMn2O4 nanorod-clusters are also prepared by lithiating the MnO2 precursors, varying the concentration of lithiating agent (LiC3H3O2·2H2O) and heat treatment temperature, and characterized for use as cathode material of lithium-ion batteries. As a result, the nanorodclustered LiMn2O4 prepared from the β-MnO2 at higher LiC3H3O2·2H2O concentration and the annealing at 800 ℃ is proven to show the cubic spinel structure and to achieve the high initial discharge capacity of 120 mAh/g.
[References]
  1. Curtis CJ, Wang J, Schulz DL, J. Electrochem. Soc., 151, ㅁ590, 2004
  2. Li NC, Patrissi CJ, Che GL, Martin CR, J. Electrochem. Soc., 147(6), 2044, 2000
  3. Li XX, Cheng FY, Guo B, Chen J, J. Phys. Chem. B, 109(29), 14017, 2005
  4. Luo JY, Cheng L, Xia YY, Electrochem. Commun., 9, 1404, 2007
  5. Luo JY, Xiong HM, Xia YY, J. Phys. Chem. C., 112, 12051, 2008
  6. Cao AM, Hu JS, Liang HP, Wan LJ, Angew. Chem. Intern. Ed., 44, 4391, 2005
  7. Wang X, Li Y, Chem. Commun., 764, 2002
  8. Wang X, Li YD, J. Am. Chem. Soc., 124(12), 2880, 2002
  9. Yuan JK, Li WN, Gomez S, Suib SL, J. Am. Chem. Soc., 127(41), 14184, 2005
  10. Thackeray MM, Prog. Solid State Chem., 25, 1, 1997
  11. Bao SJ, Li CM, Li HL, Luong JHT, J. Power Sources, 164(2), 885, 2007
  12. Jiang CH, Dou SX, Liu HK, Ichihara M, Zhou HS, J. Power Sources, 172(1), 410, 2007
  13. Fang HS, Li LP, Yang Y, Yan GF, Li GS, J. Power Sources, 184(2), 494, 2008
  14. Shaju KM, Bruce PG, Chem. Mater., 20, 5557, 2008
  15. Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y, Nano Lett., 8, 3948, 2008
  16. Hosono E, Kudo T, Honma I, Matsuda H, Zhou H, Nano Lett., 9, 1045, 2009
  17. Cho J, J. Mater. Chem., 18, 2257, 2008
  18. Tang W, Yang X, Liu Z, Ooi K, J. Mater. Chem., 13, 2989, 2003
  19. Luo JY, Zhang JJ, Xia YY, Chem. Mater., 18, 5618, 2006
  20. Jiao F, Bruce PG, Adv. Mater., 19, 65, 2007
  21. Kim IY, Ha HW, Kim TW, Paik Y, Choy JH, Hwang SJ, J. Phys. Chem. C., 113, 21274, 2009
  22. Huang XK, Lv DP, Zhang QS, Chang HT, Gan JL, Yang Y, Electrochim. Acta, 55(17), 4915, 2010