Issue
Korean Chemical Engineering Research,
Vol.49, No.3, 367-371, 2011
TBAB를 포함하는 혼합 하이드레이트의 상평형 및 13C NMR 분석
Phase Equilibria and 13C NMR Analysis of the Double Semi-Clathrates Containing TBAB
TBAB(tetra-n-butyl ammonium bromide)는 상온/상압 조건에서 semi- clathrate를 형성하는 물질로서 최근 가스 하이드레이트 형성법을 이용한 천연가스 수송 및 저장, 기체분리 공정 등에서 열역학적 촉진제로 주목받고 있다. 본 연구에서는 TBAB의 열역학적 촉진제로서의 특성을 알아보기 위해 CH4+TBAB와 CO2+TBAB 혼합 하이드레이트계에 대하여 TBAB 농도(5, 32 wt%)에 따른 가스 하이드레이트 3상(하이드레이트(H)-물(Lw)-기상(V)) 평형 조건을 측정하였다. 혼합 하이드레이트의 경우 TBAB의 농도가 5 wt%일 때에 비해 32 wt%일 경우에 열역학적 촉진 효과가 훨씬 크게 나타나는 것을 알 수 있었으며, 이는 순수 TBAB semi-clathrate의 농도별 상압 해리 온도 경향과 유사하였다. 또한, 13C NMR 분석을 통하여 CH4 + TBAB 혼합 하이드레이트의 동공에 CH4 기체가 포집되어 있음을 확인하였고 이 동공의 특성이 순수 CH4 하이드레이트(구조-I)의 작은 동공(512)과 동일함을 확인할 수 있었다.
TBAB (tetra-n-butyl ammonium bromide) forms a semi-clathrate with water under atmospheric pressure conditions and recently has attracted great attention due to its usage as a thermodynamic promoter in gas storage and separation process using gas hydrate formation. In this study, we measured the three-phase (hydrate (H) - liquid water (Lw)-vapor (V)) equilibria of the ternary CH4+TBAB+water and CO2+TBAB+water mixtures at the TBAB concentrations of 5 and 32 wt% to investigate promoting characteristics of TBAB. The greater promotion effect of TBAB was observed at 32 wt% than at 5 wt%. This result was in good agreement with that from pure TBAB semi-clathrate phase diagram under atmospheric pressure conditions. Through 13C NMR analysis of the CH4+TBAB semi-clathrate, it was found that CH4 molecules are enclathrated in the cages of the double semi-clathrate and the position of resonance peak from encaged CH4 molocules in the double semi-clathrate is the same as that from encaged CH4 molocules in the pure CH4 hydrate of structure I.
[References]
  1. Sloan ED, Koh CA, “Clathrate Hydrates of Natural Gases,” 3rd Ed.: Boca Raton: CRC Press, 2008
  2. Seo Y, Lee S, Cha I, Lee JD, Lee H, J. Phys. Chem. B, “Phase Equilibria and Thermodynamic Modeling of Ethane and Propane Hydrates in Porous Silica Gels", 113(16), 5487, 2009
  3. Lee H, Lee JW, Kim DY, Park J, Seo YT, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA, Nature., “Tuning Clathrate Hydrates for Hydrogen Storage", 434(7034), 743, 2005
  4. Lee J, J. The Korean Society for Geosystem Eng., “The Development Status and Prospect for the Production Technology of Gas Hydrate", 46(3), 387, 2009
  5. Lee S, Seo Y, Langmuir, “Experimental Measurement and Thermodynamic Modeling of the Mixed CH4+C3H8 Clathrate Hydrate Equilibria in Silica Gel Porous: Effect of Pore Size and Salinity", 26(12), 9742, 2010
  6. Kang SP, Lee H, Environ. Sci. Technol., “Recovery of CO2 from Flue Gas U8sing Gas Hydrates: Thermodynamic Verification through Phase Equilbrium Measurements", 34, 4397, 2000
  7. Cha I, Lee S, Lee JD, Lee G, Seo Y, Environ. Sci. Technol., “Separation of SF6 from Gas Mixtures Using Gas Hydrate Formation”, 44(16), 6117, 2010
  8. Shimada W, Shiro M, Kondo H, Takeya S, Oyama H, Ebinuma T, Narita H, Acta Cryst., “Tetra-n-butylammonium Bromide-Water (1/38)", C16, 65, 2005
  9. Shimada W, Ebinuma T, Oyama H, Kamata Y, Takeya S, Uchida T, Nagao J, Narita H, Jpn. J. Appl. Phys., “Separation of Gas Molecule Using Tetra-n-butyl Ammonium Bromide Semi-Clathrate Hydrate Crystals", 42(2A), L129, 2003
  10. Darbouret M, Herri JM, “Rheological Study of an Hydrate Slurry for Air Conditionning Application,” Proceedings of the 5th International Conference on Gas Hydrates (ICGH), Norway, 2005
  11. Oyama H, Shimada W, Ebinuma T, Kamata Y, Takeya S, Uchida T, Nagao J, Narita H, Fluid Phase Equilib., “Phase Diagram, Laten Heat, and Specific Heat of TBAB Semi-clathrate Hydrate Crystals", 234(1-2), 131, 2005
  12. Adisasmito S, Frank RJ, Sloan ED, J. Chem. Eng. Data., “Hydrates of Carbon Dioxide and Methane Mixtures", 36(1), 68, 1991
  13. Arjmandi M, Chapoy A, Tohidi B, J. Chem. Eng. Data., “Equilibrium Data of Hydrogen, Methane, Nitrogen, Carbon Dioxide, and Natural Gas in Semi-Clathrate Hydrates of Tetrabutyl Ammonium Bromide", 52(6), 2153, 2007